The purpose of this core is to provide essential common facilities and expertise for the immunopathological studies in all 3 projects. The primary role is to document and characterize: 1) The status of the heart, lung, kidney and skin allografts (nature of infiltrate, presence of acute or chronic rejection, including a humoral component and the quantitation of lesions. 2) Systemic effects of the protocols (toxicity, complications, BK viral infection, PTLD) 3) Intragraft markers that predict acceptance vs. rejection 4) Mechanisms by which intragraft cells may promote rejection or acceptance The pathology studies in Core A are essential to evaluate the status of the allografts, particularly the in situ events in the heart, lung and kidney grafts. The studies are critical to determine the nature and location of the cells infiltrating the graft, the role of antibodies in rejection and systemic toxicity of treatment. The techniques that will be utilized include routine histology, immunohistochemistry, immunofluorescence, and electron microscopy. Immunoperoxidase techniques with a panel of mAbs will distinguish the infiltrating cell types (Teff, Treg, Breg, et al), adhesion and cytokine molecules and receptors, complement deposition (C4d), and endothelial activation markers (e.g., pERK). Analysis will be enhanced by whole slide digital scans and morphometry. The pathology results will be correlated with functional and molecular studies done in the projects. In addition, complete necropsies will be done on all animals, with samples from all major organs analyzed by routine and special techniques as indicated.

Public Health Relevance

The goal of this research is to develop a clinically relevant strategy to induce tolerance of heart and lung transplants, by testing approaches in non-human primates and mice. If this can be achieved, organs could be transplanted in humans with success and without the complications of long term immunosuppressive therapy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL018646-39
Application #
9388376
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Schwartz, Lisa
Project Start
Project End
Budget Start
2017-11-01
Budget End
2018-10-31
Support Year
39
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Kean, Leslie S; Turka, Laurence A; Blazar, Bruce R (2017) Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy. Immunol Rev 276:192-212
Tanimine, Naoki; Turka, Laurence A; Priyadharshini, Bhavana (2017) Navigating T Cell Immunometabolism in Transplantation. Transplantation :
Alessandrini, Alessandro; Turka, Laurence A (2017) FOXP3-Positive Regulatory T Cells and Kidney Allograft Tolerance. Am J Kidney Dis 69:667-674
Wang, Zhaohui; Zheng, Qian; Zhang, Huiping et al. (2017) Ontak-like human IL-2 fusion toxin. J Immunol Methods 448:51-58
Zheng, Qian; Wang, Zhaohui; Zhang, Huiping et al. (2017) Diphtheria toxin-based anti-human CD19 immunotoxin for targeting human CD19+ tumors. Mol Oncol 11:584-594
Adam, B A; Smith, R N; Rosales, I A et al. (2017) Chronic Antibody-Mediated Rejection in Nonhuman Primate Renal Allografts: Validation of Human Histological and Molecular Phenotypes. Am J Transplant 17:2841-2850
Zuber, Julien; Sykes, Megan (2017) Mechanisms of Mixed Chimerism-Based Transplant Tolerance. Trends Immunol 38:829-843
Benichou, Gilles; Gonzalez, Bruno; Marino, Jose et al. (2017) Role of Memory T Cells in Allograft Rejection and Tolerance. Front Immunol 8:170
Purroy, Carolina; Fairchild, Robert L; Tanaka, Toshiaki et al. (2017) Erythropoietin Receptor-Mediated Molecular Crosstalk Promotes T Cell Immunoregulation and Transplant Survival. J Am Soc Nephrol 28:2377-2392
Hotta, Kiyohiko; Aoyama, Akihiro; Oura, Tetsu et al. (2016) Induced regulatory T cells in allograft tolerance via transient mixed chimerism. JCI Insight 1:

Showing the most recent 10 out of 288 publications