The purpose of this core is to provide essential common facilities and expertise for the immunopathological studies in all 3 projects. The primary role is to document and characterize: 1) The status of the heart, lung, kidney and skin allografts (nature of infiltrate, presence of acute or chronic rejection, including a humoral component and the quantitation of lesions. 2) Systemic effects of the protocols (toxicity, complications, BK viral infection, PTLD) 3) Intragraft markers that predict acceptance vs. rejection 4) Mechanisms by which intragraft cells may promote rejection or acceptance The pathology studies in Core A are essential to evaluate the status of the allografts, particularly the in situ events in the heart, lung and kidney grafts. The studies are critical to determine the nature and location of the cells infiltrating the graft, the role of antibodies in rejection and systemic toxicity of treatment. The techniques that will be utilized include routine histology, immunohistochemistry, immunofluorescence, and electron microscopy. Immunoperoxidase techniques with a panel of mAbs will distinguish the infiltrating cell types (Teff, Treg, Breg, et al), adhesion and cytokine molecules and receptors, complement deposition (C4d), and endothelial activation markers (e.g., pERK). Analysis will be enhanced by whole slide digital scans and morphometry. The pathology results will be correlated with functional and molecular studies done in the projects. In addition, complete necropsies will be done on all animals, with samples from all major organs analyzed by routine and special techniques as indicated.

Public Health Relevance

The goal of this research is to develop a clinically relevant strategy to induce tolerance of heart and lung transplants, by testing approaches in non-human primates and mice. If this can be achieved, organs could be transplanted in humans with success and without the complications of long term immunosuppressive therapy.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL018646-40
Application #
9609535
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Schwartz, Lisa
Project Start
Project End
2020-10-31
Budget Start
2018-11-01
Budget End
2019-10-31
Support Year
40
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Smith, R N; Adam, B A; Rosales, I A et al. (2018) RNA expression profiling of renal allografts in a nonhuman primate identifies variation in NK and endothelial gene expression. Am J Transplant 18:1340-1350
Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan et al. (2018) Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy. J Heart Lung Transplant 37:385-393
Gonzalez-Nolasco, Bruno; Wang, Mengchuan; Prunevieille, Aurore et al. (2018) Emerging role of exosomes in allorecognition and allograft rejection. Curr Opin Organ Transplant 23:22-27
Smith, R N; Matsunami, M; Adam, B A et al. (2018) RNA expression profiling of nonhuman primate renal allograft rejection identifies tolerance. Am J Transplant 18:1328-1339
Fan, Martin Y; Low, Jun Siong; Tanimine, Naoki et al. (2018) Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Rep 25:1204-1213.e4
Benichou, Gilles; Prunevieille, Aurore (2018) Graft-derived exosomes. When small vesicles play a big role in transplant rejection. Am J Transplant 18:1585-1586
Marangoni, Francesco; Zhang, Ruan; Mani, Vinidhra et al. (2018) Tumor Tolerance-Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin. J Immunol 200:3647-3661
Fan, Martin Y; Turka, Laurence A (2018) Immunometabolism and PI(3)K Signaling As a Link between IL-2, Foxp3 Expression, and Suppressor Function in Regulatory T Cells. Front Immunol 9:69
Wang, Zhaohui; Louras, Nathan J; Lellouch, Alexandre G et al. (2018) Dosing optimization of CCR4 immunotoxin for improved depletion of CCR4+ Treg in nonhuman primates. Mol Oncol 12:1374-1382
Newton, Ryan H; Shrestha, Sharad; Sullivan, Jenna M et al. (2018) Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol 19:838-848

Showing the most recent 10 out of 305 publications