This Program Project Grant (PPG) began 35 years ago when we delineated the LDL receptor pathway for control of cholesterol metabolism and showed that defects in the LDL receptor produce Familial Hypercholesterolemia and atherosclerosis. After 35 years, our goals have broadened and the participants have increased, but the focus remains the same: to understand the genetic and molecular basis for regulation of lipid and lipoprotein metabolism and to use this knowledge to prevent and treat lipid-related diseases i.e., atherosclerosis and Metabolic Syndrome. During the last 5 years, we published 164 papers, reporting the following major advances: 1) discovery of Scap as the sensing receptor for membrane cholesterol that controls SREBP processing, thereby determining LDL receptor number and plasma LDL level;2) discovery of mutations in PCSK9 that lower plasma LDL and decrease heart attacks as much as 88%;3) demonstration that PCSK9 functions extracellularly to bind and degrade LDL receptors, an observation that stimulated pharmaceutical companies to develop antibodies that block PCSK9 and lower LDL;4) elucidation of the hydrophobic handoff mechanism for export of LDL-derived cholesterol from lysosomes;5) delineation of the sterol-regulated, ubiquitin-mediated pathway for degradation of HMG CoA reductase and lnsig-1;6) discovery of GOAT, the enzyme that attaches octanoic acid to ghrelin, a covalent modification required for ghrelin's activity in controlling appetite and blod sugar;7) identification of a protein, MIG12, that activates fatty acid synthesis in liver;8) discovery of 25-hydroxycholesterol as an immunoregulatory sterol that links the innate and adaptive immune systems;and 9) elucidation of an LRP1- mediated signaling pathway that protects vascular smooth muscle cells against atherosclerosis. We now apply for a 5-year renewal (Years 36-40) to further study these and related phenomena through an integrated, multidisciplinary approach. We propose to learn more about known molecules and to discover new ones that regulate lipid and lipoprotein metabolism as it relates to disease. We will continue to study these processes at all levels - molecules (i.e., gene, mRNA, protein), cells, experimental animals, and human patients. We will employ multiple approaches - biochemistry, molecular biology, genetics, cell biology, gene-manipulated mice, animal physiology, clinical genetics, and genomics. Such an integrated interdisciplinary approach is possible only through continued support of this PPG.

Public Health Relevance

Disordered fat metabolism lies at the root of two common and devastating diseases in industrialized societies: cardiovascular disease and diabetes. Deep understanding of cholesterol metabolism, much of which resulted from this PPG, has already reduced coronary disease. Further reductions in vascular disease will follow from future advances resulting from studies proposed in this PPG renewal. We have already provided an unprecedented number of novel research tools (>380 different cDNA clones, cell lines, monoclonal and polyclonal antibodies, specialized plasmid constructs, transgenic and knockout mice) to the scientific communitv. and many more will emerge from this renewal.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Smagris, Eriks; BasuRay, Soumik; Li, John et al. (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108-18
Ulrich, Victoria; Konaniah, Eddy S; Herz, Joachim et al. (2014) Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A 111:13493-8
Ulrich, Victoria; Konaniah, Eddy S; Lee, Wan-Ru et al. (2014) Antiphospholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J Am Heart Assoc 3:e001369
Gusarova, Viktoria; Alexa, Corey A; Na, Erqian et al. (2014) ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691-6
Reboldi, Andrea; Dang, Eric V; McDonald, Jeffrey G et al. (2014) Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345:679-84
Xu, Min; Nagati, Jason S; Xie, Jian et al. (2014) An acetate switch regulates stress erythropoiesis. Nat Med 20:1018-26
Kozlitina, Julia; Smagris, Eriks; Stender, Stefan et al. (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352-6
Das, Akash; Brown, Michael S; Anderson, Donald D et al. (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3:
Maetzel, Dorothea; Sarkar, Sovan; Wang, Haoyi et al. (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2:866-80
Lane-Donovan, Courtney; Philips, Gary T; Herz, Joachim (2014) More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83:771-87

Showing the most recent 10 out of 670 publications