The Tissue Culture Core Laboratory will be responsible for providing investigators with cultured cells, antibodies, and facilities for routine microscopy of biological samples. The core will be directed by Dr. Goldstein. He will be assisted by Drs. Y.K. Ho, Guosheng Liang, and Rob Rawson. The technical work in the Tissue Culture Facility of this Core is carried out by five experienced technicians (Lisa Beatty, Angela Carroll, Shomanike Head, Ijeoma Onwuneme, Muleya Kapaale) and one laboratory assistant (Dawn Rollins). The Tissue Culture Facility is located in the Department of Molecular Genetics and consists of three suites of rooms that are used solely for tissue culture. One suite contains four work modules that open into a common work area;the second suite contains three work modules that open into a common work area;and the third suite contains two work modules, one for adenovirus work and the other for baculovirus. Each module is equipped with a sterile work area (Biological Safety Cabinet hood), one or more CO2 incubators, a refrigerator, and an inverted microscope. The common work area in each of the suites contains one or two sterile work areas. The entire facility contains 14 inverted microscopes (6 of which are phase-contrast microscopes), 1 stereo microscope, 16 sterile work areas (hoods), 33 single-chamber CO2 incubators, 1 single-chamber multigas incubator, 2 non-C02 refrigerated incubators, 1 roller bottle incubator, 3 refrigerated incubator shakers, 4 table-top refrigerated centrifuges, and 11 refrigerators. Five liquid nitrogen freezers for storage of cell lines are located in the common work area adjacent to the work modules. In addition to this standard equipment, we have a Zeiss Axiovert 35 M inverted fluorescence microscope that allows us to visualize cells directly in the Petri dish (under sterile conditions) so as to determine whether or not they have taken up reconstituted fluorescent LDL or other fluorescent molecules.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Smagris, Eriks; BasuRay, Soumik; Li, John et al. (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61:108-18
Ulrich, Victoria; Konaniah, Eddy S; Herz, Joachim et al. (2014) Genetic variants of ApoE and ApoER2 differentially modulate endothelial function. Proc Natl Acad Sci U S A 111:13493-8
Ulrich, Victoria; Konaniah, Eddy S; Lee, Wan-Ru et al. (2014) Antiphospholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J Am Heart Assoc 3:e001369
Gusarova, Viktoria; Alexa, Corey A; Na, Erqian et al. (2014) ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691-6
Reboldi, Andrea; Dang, Eric V; McDonald, Jeffrey G et al. (2014) Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345:679-84
Xu, Min; Nagati, Jason S; Xie, Jian et al. (2014) An acetate switch regulates stress erythropoiesis. Nat Med 20:1018-26
Kozlitina, Julia; Smagris, Eriks; Stender, Stefan et al. (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352-6
Das, Akash; Brown, Michael S; Anderson, Donald D et al. (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3:
Maetzel, Dorothea; Sarkar, Sovan; Wang, Haoyi et al. (2014) Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2:866-80
Lane-Donovan, Courtney; Philips, Gary T; Herz, Joachim (2014) More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83:771-87

Showing the most recent 10 out of 670 publications