The Molecular Biology and Lipidomics Core Laboratory is directed by Dr. Russell. He will be assisted in day-to-day operations by Dr. Jonathan Cohen, who is an expert in high-throughput DNA sequencing. This Core laboratory provides support for acrylamide gel electrophoresis of proteins, DNA sequencing, analysis of gene expression by oligonucleotide microarray hybridization and real-time polymerase chain reactions (PCRs), mass spectrometric analysis of lipids, oligonucleotide procurement, genomic DNA and RNA isolation, and the maintenance and storage of bacterial strains, plasmids, and purified proteins used within this Program Project. Two experienced technicians. Daphne Head (50% time;6 calendar months) and Jeffry Cormier (100% time;12 calendar months), and a research track faculty member (Dr. Jeffrey McDonald, 50% of time;6 calendar months) will perform the duties associated with this Core. The laboratory facility is located within the Department of Molecular Genetics.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL020948-36A1
Application #
8302518
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
36
Fiscal Year
2012
Total Cost
$529,887
Indirect Cost
$196,450
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Mitsche, Matthew A; Hobbs, Helen H; Cohen, Jonathan C (2018) Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 293:6958-6968
Banfi, Serena; Gusarova, Viktoria; Gromada, Jesper et al. (2018) Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice. Proc Natl Acad Sci U S A 115:E1249-E1258
Fine, Michael; Schmiege, Philip; Li, Xiaochun (2018) Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat Commun 9:4192
Linden, Albert G; Li, Shili; Choi, Hwa Y et al. (2018) Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 59:475-487
Johnson, Brittany M; DeBose-Boyd, Russell A (2018) Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase. Semin Cell Dev Biol 81:121-128
Qi, Xiaofeng; Schmiege, Philip; Coutavas, Elias et al. (2018) Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362:
Engelking, Luke J; Cantoria, Mary Jo; Xu, Yanchao et al. (2018) Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 81:98-109
Hobbs, Helen H (2018) Science, serendipity, and the single degree. J Clin Invest 128:4218-4223
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
DeBose-Boyd, Russell A; Ye, Jin (2018) SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 43:358-368

Showing the most recent 10 out of 766 publications