During the present cycle of our PPG, we have developed a novel approach, which we term "integrative genetics", to help identify genes and pathways associated with the Metabolic Syndrome (MetSyn). We have also developed a new mapping tool in mice, which we term a "mouse diversity panel" (MDP), which allows high resolution mapping of traits such as gene-by-environment interactions. In the present proposal, we will apply these tools to two basic questions concerning the metabolic syndrome. The first question has to do with the nature ofthe molecular networks underlying human MetSyn traits. In our previous "integrative genetics" studies, we examined both molecular phenotypes (transcript levels) and clinical phenotypes in segregating mouse populations. This allowed us to identify genetic loci controlling transcript levels and model co-expression networks. We will now extend this approach to human populations. In collaboration with Dr. Markku Laakso, we will examine DNA variation and transcript levels in fat biopsies from 1,000 individuals in a MetSyn study population that has been typed for the major MetSyn traits. We will then identify genes and co-expression networks related to clinical traits. Gene-by-diet interactions are critically important in MetSyn, but they are notoriously difficult to study directly in human populations. We will use our mouse diversity panel to examine differences in biologic networks and clinical traits in mice maintained on either a chow diet or a high fat diet for 8 weeks. This will allow us to map genes controlled dietary responsiveness of MetSyn traits and to medol to co-expression networks perturbed by these genes. The mouse and human data will be integrated and aspects relevant to this program validated in collaborative studies with other Projects and the Cores.

Public Health Relevance

MetSyn is a primary cause of cardiovascular disease and diabetes. Our integrative genetics approach provides a means of understanding the biologic networks that underlie the complex interactions in MetSyn traits. One particularly important interaction is that between genetics and diet, and this will be addressed using our mouse diversity panel. The results will be relevant to disease prevention, diagnosis, and treatment.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Rau, Christoph D; Wang, Jessica; Avetisyan, Rozeta et al. (2015) Mapping genetic contributions to cardiac pathology induced by Beta-adrenergic stimulation in mice. Circ Cardiovasc Genet 8:40-9
Iatan, Iulia; Choi, Hong Y; Ruel, Isabelle et al. (2014) The WWOX gene modulates high-density lipoprotein and lipid metabolism. Circ Cardiovasc Genet 7:491-504
Aguilar-Salinas, Carlos A; Tusie-Luna, Teresa; Pajukanta, Päivi (2014) Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia. Metabolism 63:887-94
Mao, Hui Z; Ehrhardt, Nicole; Bedoya, Candy et al. (2014) Lipase maturation factor 1 (lmf1) is induced by endoplasmic reticulum stress through activating transcription factor 6? (Atf6?) signaling. J Biol Chem 289:24417-27
Hartiala, Jaana; Bennett, Brian J; Tang, W H Wilson et al. (2014) Comparative genome-wide association studies in mice and humans for trimethylamine N-oxide, a proatherogenic metabolite of choline and L-carnitine. Arterioscler Thromb Vasc Biol 34:1307-13
He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad et al. (2014) Identifying genetic relatives without compromising privacy. Genome Res 24:664-72
Reue, Karen; Lee, Jessica M; Vergnes, Laurent (2014) Regulation of bile acid homeostasis by the intestinal Diet1-FGF15/19 axis. Curr Opin Lipidol 25:140-7
Mangul, Serghei; Wu, Nicholas C; Mancuso, Nicholas et al. (2014) Accurate viral population assembly from ultra-deep sequencing data. Bioinformatics 30:i329-37
Sha, Haibo; Sun, Shengyi; Francisco, Adam B et al. (2014) The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab 20:458-70
Vergnes, Laurent; Reue, Karen (2014) Adaptive thermogenesis in white adipose tissue: is lactate the new brown(ing)? Diabetes 63:3175-6

Showing the most recent 10 out of 367 publications