Lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL) have long been appreciated as important biochemical players in triglyceride (TG) and cholesterol metabolism. More recently, these lipases emerged as some ofthe strongest genetic determinants of plasma TG and HDL cholesterol levels in the general population. Dysregulation of LPL results in pathological changes associated with the Metabolic Syndrome, including dyslipidemia, insulin resistance, cardiomyopathy and beta-cell dysfunction. Although much ofthe physiological regulation of LPL activity occurs at the post-translational level, the underlying molecular mechanisms have been poorly understood. In the current PPG cycle we identified a novel factor, Lipase Maturation Factor 1 (Lmf1), which facilitates the folding, assembly and secretion of lipases. While Lmf1 is clearly required for lipase expression, the metabolic consequences of combined lipase deficiency in the adult organism, and the molecular function of Lmf1 remain unexplored.
Three aims will be pursued to address these issues.
In Aim 1, we will generate and characterize conditional and tissue-specific knock-out mouse models to investigate the role of Lmf1 in systemic and adipose metabolism. To extend these studies to humans in Aim 2, we will identify variants associated with fasting or postprandial plasma TG levels by resequencing LMFI in various populations. Furthermore, naturally occurring variants affecting Lmf1 expression in inbred mouse strains will be exploited to address the role of this protein in lipid metabolism and related traits.
In Aim 3, we will investigate the molecular aspects of Lmf1 function by identifying the proteome of Lmf1-interacting factors using genetic and biochemical approaches.

Public Health Relevance

Emerging evidence suggests a principal role for lipases in the determination of plasma TG and HDLcholesterol levels in the general population. The current proposal focuses on a novel factor, Lmf 1, and a novel molecular mechanism in the regulation of lipases. Thus, Lmf1 may play an important role in lipid metabolism relevant to the Metabolic Syndrome and cardiovascular disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Singh, Rajan; Parveen, Meher; Basgen, John M et al. (2016) Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 14:78-92
Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun et al. (2016) Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models. PLoS Genet 12:e1005849
Baldán, Ángel; de Aguiar Vallim, Thomas Q (2016) miRNAs and High-Density Lipoprotein metabolism. Biochim Biophys Acta 1861:2053-2061
Agrawal, Rahul; Noble, Emily; Vergnes, Laurent et al. (2016) Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 36:941-53
Kang, Eun Yong; Martin, Lisa; Mangul, Serghei et al. (2016) Discovering SNPs Regulating Human Gene Expression Using Allele Specific Expression from RNA-Seq Data. Genetics :
Gusev, Alexander; Ko, Arthur; Shi, Huwenbo et al. (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48:245-52
Kang, Eun Yong; Park, Yurang; Li, Xiao et al. (2016) ForestPMPlot: A Flexible Tool for Visualizing Heterogeneity Between Studies in Meta-analysis. G3 (Bethesda) 6:1793-8
Joo, Jong Wha J; Kang, Eun Yong; Org, Elin et al. (2016) Efficient and Accurate Multiple-Phenotype Regression Method for High Dimensional Data Considering Population Structure. Genetics 204:1379-1390
Ribas, Vicent; Drew, Brian G; Zhou, Zhenqi et al. (2016) Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci Transl Med 8:334ra54
Salehi, Pezhman; Myint, Anthony; Kim, Young J et al. (2016) Genome-Wide Association Analysis Identifies Dcc as an Essential Factor in the Innervation of the Peripheral Vestibular System in Inbred Mice. J Assoc Res Otolaryngol 17:417-31

Showing the most recent 10 out of 470 publications