The Database and Statistics Core of this Program Project is housed within the Department of Human Genetics in the UCLA School of Medicine. The Department encompasses the top 3 floors of the 10 year old Genetics Research Center in the Gonda Building. It has a 'state of the art'fully networked computer facility staffed by programmers and network managers through the Bioinformatics Core of the Department of Human Genetics. In addition, the UCLA Department of Human Genetics has developed as one of its strengths a substantial statistical genetics research group, focused on developing genetic analysis software within the Department. It includes Drs. Cantor, Sinsheimer, Horvath Papp, and Lange. Some of the most recent software developments in association analysis and quantitative trait linkage analysis by this group were motivated by data and research questions generated by the Program Project in its current cycle. The Database and Statistics Core hosts, and maintains the central servers for the Program Project. These include dedicated Database, Web, and Terminal servers located in a secure facility with professional-grade cooling and power. These machines have access to over 42 TB of storage capacity. The data is backed up incrementally each night to a RAID disk array and then fully backed up each weekend to a digital tape library. All servers are maintained at the current patch level of the operating system and application software. These dedicated servers are powerful machines as is required by the Program Project's data size and complexity. All machines will be highly secure while still allowing for easy access and maximum uptime. The Program Project scientists will also have access to a computational cluster of over 40 nodes maintained by the Human Genetics IT staff. This computational cluster has a full library of genetic applications, and is continually updated with current versions or any new packages that are requested. The machine used as the Terminal Server is an eight-way Xeon 3 GHz computer with 16 GB of RAM. Using standard Windows Remote Desktop Connectivity (RDC) software. Program Project data analysts will be able to access this computer from anywhere with an Internet connection, through personalized, password protected accounts. For optimal speed, all data analysis will take place on the Terminal Sen/er, not on the client's computer. There is a gigabit connection between this Terminal Server and the Database Server for fast data transfer. By using 64-bit versions of the Windows operating systems and the application software, the data analysts are assured access to virtually the full 16 GB data space for large-scale numerical computations Drs. Cantor, Sinsheimer, Horvath, Papp and Lange have offices and data analysis and computer labs in the building, along with the labs of Drs Pajukanta, Lusis and Reue, so discussions regarding design and data analysis are extensive and occur often. To facilitate data management and the performance of statistical and genetic analyses, databases and statistical and genetic analysis programs that are used by this Core are updated regularly. Additionally, publicly available genetic analysis programs are installed on the network as they become available through the worfdwide web. Data are backed up daily. In order to keep abreast of current developments in computing technologies, the computer system's hardware and software are upgraded on a regular basis in the UCLA Human Genetics Department Bioinformatics Core.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Lang, Jennifer M; Pan, Calvin; Cantor, Rita M et al. (2018) Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio 9:
Cherlin, Svetlana; Wang, Maggie Haitian; Bickeböller, Heike et al. (2018) Detecting responses to treatment with fenofibrate in pedigrees. BMC Genet 19:64
Park, Shuin; Ranjbarvaziri, Sara; Lay, Fides D et al. (2018) Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation 138:1224-1235
Roberts, Adam B; Gu, Xiaodong; Buffa, Jennifer A et al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407-1417
Zhu, W; Buffa, J A; Wang, Z et al. (2018) Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost 16:1857-1872
Lee, Jessica M; Ong, Jessica R; Vergnes, Laurent et al. (2018) Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants. J Lipid Res 59:429-438
Miao, Zong; Alvarez, Marcus; Pajukanta, Päivi et al. (2018) ASElux: an ultra-fast and accurate allelic reads counter. Bioinformatics 34:1313-1320
Kurt, Zeyneb; Barrere-Cain, Rio; LaGuardia, Jonnby et al. (2018) Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ 9:46
Orozco, Luz D; Farrell, Colin; Hale, Christopher et al. (2018) Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 27:1830-1846
Chella Krishnan, Karthickeyan; Kurt, Zeyneb; Barrere-Cain, Rio et al. (2018) Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Syst 6:103-115.e7

Showing the most recent 10 out of 518 publications