The Biochemical and Metabolic Profiling Core provides sensitive and accurate in vitro biochemical assays and in vivo metabolic/physiologic assays for the analysis of selected biomarkers relevant to lipid and glucose metabolism. The methods and assays described below have all been fully implemented and used successfully by our experienced personnel for several years. This Core has served as a vital component of the PPG for the past 20 years. The assays performed by the Biochemical and Metabolic Profiling Core can be broken down into four broad categories: 1). Analysis of plasma samples;2) Analysis of tissue samples;3) In vivo metabolic/physiologic tests. 4) Specialized biochemical and metabolic analysis designed to address specific project needs. The assays and methods we will use are listed below. The assays in categories 1-3 which will be used on a routine basis have a more detailed description of the methodology in the """"""""Method Details"""""""" at the end of this section.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL028481-30
Application #
8686036
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
30
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Tarling, Elizabeth J; Clifford, Bethan L; Cheng, Joan et al. (2017) RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism. J Clin Invest 127:3741-3754
Nakano, Haruko; Minami, Itsunari; Braas, Daniel et al. (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:
Org, Elin; Blum, Yuna; Kasela, Silva et al. (2017) Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 18:70
Pillai, Indulekha C L; Li, Shen; Romay, Milagros et al. (2017) Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell 20:218-232.e5
von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb et al. (2017) Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. Cell Metab 25:248-261
Nikkola, Elina; Ko, Arthur; Alvarez, Marcus et al. (2017) Family-specific aggregation of lipid GWAS variants confers the susceptibility to familial hypercholesterolemia in a large Austrian family. Atherosclerosis 264:58-66
Schugar, Rebecca C; Shih, Diana M; Warrier, Manya et al. (2017) The TMAO-Producing Enzyme Flavin-Containing Monooxygenase 3 Regulates Obesity and the Beiging of White Adipose Tissue. Cell Rep 19:2451-2461
Rau, Christoph D; Romay, Milagros C; Tuteryan, Mary et al. (2017) Systems Genetics Approach Identifies Gene Pathways and Adamts2 as Drivers of Isoproterenol-Induced Cardiac Hypertrophy and Cardiomyopathy in Mice. Cell Syst 4:121-128.e4
Wang, Huan; Airola, Michael V; Reue, Karen (2017) How lipid droplets ""TAG"" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta 1862:1131-1145
Kessler, Thorsten; Wobst, Jana; Wolf, Bernhard et al. (2017) Functional Characterization of the GUCY1A3 Coronary Artery Disease Risk Locus. Circulation 136:476-489

Showing the most recent 10 out of 493 publications