This Program Project received a priority score of 155 on March 20, 2008. In this amended application we have corrected each and every one of the weaknesses identified by the Special Review Committee (SRC). These changes have included dropping specific aims or sub-aims in Projects 3-4-5-6, obtaining additional expertise (Project 6), adding experiments suggested by the reviewers (all Projects) and providing power calculations (Projects 3 and 5) as requested by the reviewers. We have also responded to the review by proposing a sophisticated integrated database system that will be maintained in Core D as recommended by the SRC. The intersection of inflammation and lipid metabolism in atherosclerosis is the theme of this Program Project. Project 1 will identify the pivotal regulators of a gene network that responds to oxidized phospholipids (Ox-PAPC/PEIPC) using cell biology and bioinformatics approaches. Project 2 will determine the mechanisms by which apolipoprotein mimetic peptides dramatically reduce inflammation and atherosclerosis. Project 3 will focus on Matrix Gla Protein (MGP) and the hepatic ABC transporter 6 (Abcc6) to determine the molecular mechanisms regulating vascular calcification and atherosclerosis. Project 4 will determine the molecular and cellular mechanisms by which ABC transporter G1 (ABCG1) regulates intracellular sterol movement and alters macrophage and lymphocyte function in atherosclerosis. Project 5 will use an integrative genetics approach to study the interactions of vascular cells, macrophages, and lipids as they relate to atherogenesis. Project 6 will determine the mechanisms by which interferon regulatory factor 3 (IRF3) signaling regulates the function of the liver X receptor (LXR) and cholesterol metabolism in atherosclerosis and the mechanisms by which the NR4A nuclear receptors mediate metabolic-immune crosstalk in atherosclerosis. These six Projects will be supported by four cores and together will form a highly interactive and synergistic Program Project that is focused on lipid and lipoprotein metabolism in atherosclerosis.

Public Health Relevance

Work from this Program Project led major pharmaceutical firms to initiate testing of three of our discoveries from the current grant cycle as possible novel therapeutic approaches: apoA-l mimetic peptides;inhibitors of the 5-LO pathway, and selective agonists of LXRbeta. The studies proposed for the next grant cycle likely will elucidate molecular mechanisms that may provide the basis for other novel therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL030568-29
Application #
8246467
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Liu, Lijuan
Project Start
1997-08-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
29
Fiscal Year
2012
Total Cost
$3,464,014
Indirect Cost
$1,214,654
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Hormozdiari, Farhad; van de Bunt, Martijn; Segrè, Ayellet V et al. (2016) Colocalization of GWAS and eQTL Signals Detects Target Genes. Am J Hum Genet 99:1245-1260
Seldin, Marcus M; Meng, Yonghong; Qi, Hongxiu et al. (2016) Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc 5:
Zhu, Weifei; Gregory, Jill C; Org, Elin et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 165:111-24
Shufelt, Chrisandra; Elboudwarej, Omeed; Johnson, B Delia et al. (2016) Carotid artery distensibility and hormone therapy and menopause: the Los Angeles Atherosclerosis Study. Menopause 23:150-7
Meriwether, David; Sulaiman, Dawoud; Wagner, Alan et al. (2016) Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 57:1175-93
Duong, Dat; Zou, Jennifer; Hormozdiari, Farhad et al. (2016) Using genomic annotations increases statistical power to detect eGenes. Bioinformatics 32:i156-i163
Tarling, Elizabeth J; Edwards, Peter A (2016) Intracellular Localization of Endogenous Mouse ABCG1 Is Mimicked by Both ABCG1-L550 and ABCG1-P550-Brief Report. Arterioscler Thromb Vasc Biol 36:1323-7
Chattopadhyay, Arnab; Navab, Mohamad; Hough, Greg et al. (2016) Tg6F ameliorates the increase in oxidized phospholipids in the jejunum of mice fed unsaturated LysoPC or WD. J Lipid Res 57:832-47
Hormozdiari, Farhad; Kang, Eun Yong; Bilow, Michael et al. (2016) Imputing Phenotypes for Genome-wide Association Studies. Am J Hum Genet 99:89-103
Lusis, Aldons J; Seldin, Marcus M; Allayee, Hooman et al. (2016) The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J Lipid Res 57:925-42

Showing the most recent 10 out of 743 publications