Over the past 15 years, quantitative trait locus (QTL) mapping has identified hundreds of chromosomal regions containing genes affecting atherosclerosis or other disease-related phenotypes in mice, yet the underlying genes and pathways have remained largely elusive. During the present grant cycle, we helped develop a systems-based approach, which we term "integrative genetics", that is proving useful in not only identifying the genes underlying QTL but also in elaborating the complex genetic and environmental interactions in traits such as atherosclerosis. The fundamental concept is to use common genetic variation, as it exists among inbred strains of mice, to help organize whole genome expression array data into biologically relevant networks that link to both DMA variation and clinical trait variation. During the present ' cycle, we applied this approach to certain metabolic and cardiovascular traits, using expression array data from tissues such as liver, muscle, and adipose. The results were highly encouraging, as we developed networks that predicted novel genes for obesity and vascular calcification. The goal of the present proposal is to adopt this integrative genetics .approach to study the interactions of,vascular cells, macrophages, and lipids as they relate to atherogenesis. Our work thus far has utilized linkage analyses of data from crosses between inbred strains of mice. We now propose to complement this with association analyses of a "mouse diversity panel", consisting of about 100 inbred strains that have been largely sequenced. Such a panel has important advantages for mapping resolution and for integrating physiologic/pathologic measures requiring analysis of multiple mice. Recent data, generated since the first submission, provide strong proof of concept evidence for the approach. In order to examine atherosclerosis and related traits among the panel, we propose the use of a dominant hyperlipidemia model that will be bred to each of the 100 strains to create genetically diverse heterozygous mice for phenotypic analyses. Our proposal is organized into three interactive Aims that integrate linkage analyses (Aim 1), association analyses (Aim 2), and mathematical modeling (Aim 3).

Public Health Relevance

Common forms of cardiovascular disease involve the interactions of hundreds of genetic factors and important environmental factors. Our work attempts to model these interactions in mice by simultaneously examining DMA variations, gene expression patterns, and disease related traits among inbred strains of mice, complementing studies in humans.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Yan, Xinmin; Lee, Sangderk; Gugiu, B Gabriel et al. (2014) Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochem Biophys Res Commun 444:69-74
Joo, Jong Wha J; Sul, Jae Hoon; Han, Buhm et al. (2014) Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies. Genome Biol 15:r61
Mangul, Serghei; Caciula, Adrian; Al Seesi, Sahar et al. (2014) Transcriptome assembly and quantification from Ion Torrent RNA-Seq data. BMC Genomics 15 Suppl 5:S7
Albright, Jody; Quizon, Pamela M; Lusis, Aldons J et al. (2014) Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery. BMC Med Genomics 7:51
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong et al. (2014) Identifying causal variants at loci with multiple signals of association. Genetics 198:497-508
L├╝scher, Thomas F; Landmesser, Ulf; von Eckardstein, Arnold et al. (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171-82
Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert et al. (2014) Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med 3:161-71
Ghazalpour, Anatole; Bennett, Brian J; Shih, Diana et al. (2014) Genetic regulation of mouse liver metabolite levels. Mol Syst Biol 10:730
Han, Buhm; Kang, Eun Yong; Raychaudhuri, Soumya et al. (2014) Fast pairwise IBD association testing in genome-wide association studies. Bioinformatics 30:206-13
Hasin-Brumshtein, Yehudit; Hormozdiari, Farhad; Martin, Lisa et al. (2014) Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics 15:471

Showing the most recent 10 out of 638 publications