Project 2 focuses on identifying key regulators that provide intrinsic protection to the endothelium during the initial stages of atherosclerosis. In particular we found that NOTCH1, a cell surface receptor and transcription factor that, based on preliminary data, prevents the onset of inflammation on arterial endothelium. NOTCH1 is constitutively expressed by the adult endothelium of large arteries in mouse and human, however, expression is reduced by dietary lipids (Western Diet or LPA) in vivo. Similarly, expression analyses of endothelial cells from 147 individual human donors, revealed differences in basal and oxidized-phospholipid (ox-PAPC) treated levels of NOTCH1 and identified a locus that was associated with the response of endothelial cells to NOTCH1 by ox-PAPC. This same locus was also associated with HDL levels in a large scale GWAS including 100,000 humans. Reduction of NOTCH1 transcripts in human endothelium in vitro or endothelial-specific genetic inactivation of Notch1 in mice triggers an inflammatory response in the absence of any additional insult. Conversely, endothelial cells with constitutive overexpression of NOTCH1 are muted to the pro-inflammatory effects of ox-PAPC, implicating that NOTCH1 is downstream of ox-PAPC, at least with respect to its pro-inflammatory effects. Studies in this project will test the hypothesis that reduction of NOTCH1 by dietary lipids contributes to the prolonged inflammation typical of atherosclerotic lesions. In addition and consistent with a role in endothelial homeostasis and suppression of inflammation, reduction of endogenous NOTCH1 levels, in the absence of ox-PAPC, results in endothelial barrier breakdown, increased permeability and leukocyte binding. Mice with genetic inactivation of Notch1 exhibit leukocyte infiltration, detachment and loss of endothelial cells from the intima. Based on these findings, the central hypothesis of this application is that NOTCH1 in the endothelium is important in maintaining an anti-inflammatory interface between blood and tissue. To test this hypothesis, we propose three specific aims: 1. To identify the mechanism by which pro-atherogenic lipids regulate NOTCH1; 2. To determine the contribution of NOTCH1 in the regulation of barrier stability; and 3. To ascertain the impact of Notch1 in atherosclerosis in animal models.

Public Health Relevance

Inflammation of the vascular wall is a well-recognized predisposing factor that initiates cardiovascular disease. Experiments outlined in Project 2 are designed to elucidate the molecular mechanisms that provide pressure to maintain homeostatic control in the inner layer of large arteries and prevent the onset of atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL030568-35
Application #
9689092
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
2019-05-01
Budget End
2020-04-30
Support Year
35
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Norheim, Frode; Bjellaas, Thomas; Hui, Simon T et al. (2018) Genetic, dietary, and sex-specific regulation of hepatic ceramides and the relationship between hepatic ceramides and IR. J Lipid Res 59:1164-1174
Yu, Jingyi; Seldin, Marcus M; Fu, Kai et al. (2018) Topological Arrangement of Cardiac Fibroblasts Regulates Cellular Plasticity. Circ Res 123:73-85
Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan et al. (2018) Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells. J Cell Physiol 233:1812-1822
Mangul, Serghei; Yang, Harry Taegyun; Strauli, Nicolas et al. (2018) ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol 19:36
Mack, Julia J; Iruela-Arispe, M Luisa (2018) NOTCH regulation of the endothelial cell phenotype. Curr Opin Hematol 25:212-218
Beceiro, Susana; Pap, Attila; Czimmerer, Zsolt et al. (2018) LXR nuclear receptors are transcriptional regulators of dendritic cell chemotaxis. Mol Cell Biol :
Sallam, Tamer; Jones, Marius; Thomas, Brandon J et al. (2018) Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med 24:304-312
Skye, Sarah M; Zhu, Weifei; Romano, Kymberleigh A et al. (2018) Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res 123:1164-1176
Lin, Liang-Yu; Chun Chang, Sunny; O'Hearn, Jim et al. (2018) Systems Genetics Approach to Biomarker Discovery: GPNMB and Heart Failure in Mice and Humans. G3 (Bethesda) 8:3499-3506
Rahmani, Elior; Schweiger, Regev; Shenhav, Liat et al. (2018) BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 19:141

Showing the most recent 10 out of 791 publications