Disorders of ineffective erythropoiesis cause considerable human morbidity and utilize major health resources. A major barrier to the design of novel treatment strategies is an incomplete understanding of the molecular mechanisms that mediate normal terminal erythroid maturation. The transcription factor GATA-1 is a master regulator of erythropoiesis. In 2004, Weiss and colleagues showed that GATA-1 not only activates many erythroid-specific genes, but also represses nearly an equal number. Subsequent studies showed that both the activated and repressed genes are directly controlled by GATA-1. This has led to two major unanswered questions in the field: (1) how does GATA-1 distinguish between activated and repressed genes? And (2) how does GATA-1 carry out these opposing transcriptional functions? Our long-term obiective is to further elucidate these mechanisms and apply this information to better understand and treat human ineffective erythropoietic disorders. As a first step, we recently performed GATA-1 ChlP-seq and cDNA microarray analysis in murine erythroid cells to identify genome-wide direct functional GATA-1 target genes. This provided a large dataset of activated (454) and repressed (325) GATA-1 target genes and their GATA-1 bound cis-regulatory elements. Bioinformatic analysis revealed candidate features that distinguish GATA-1 activated versus repressed genes. Consistent with the recent work of others, we found that combinatorial occupancy by SCL complexes strongly correlates with gene activation. However, the simple presence of composite GATA:E-box (SCL binding) DNA binding motifs by themselves does not fully distinguish between activated and repressed genes. Therefore, additional information must be required to specify GATA-1 activated genes.
The specific aims of this proposal are to: (1) identify additional factors that cooperate with SCL to distinguish between activated and repressed GATA-1 target genes;and (2) further understand the mechanisms by which SCL co-occupancy results in GATA-1 positive transcriptional activity. Based on our preliminary studies, we hypothesize that certain GC-rich and CAAT binding transcription factors contribute to distinguishing GATA-1 activated genes. We also hypothesize that SCL complexes block interactions between GATA-1 and Polycomb Repressive Complex 2, and recruit positive transcriptional elongation regulators. These hypotheses will be tested using ChlP-seq, gene expression analysis, transgenic reporter assays, and biochemical techniques. The expected outcome from these studies is the identification of novel mechanisms involved in specifying GATA-1 gene activation versus repression.

Public Health Relevance

GATA-1 is a master transcriptional regulator of erythroid development, and is mutated in certain human ineffective erythropoietic disorders. This project is therefore central to the overall theme ofthe program project grant;namely the developmental biology of human erythropoiesis. It dovetails with the other projects on this grant through its study of GATA-1 target genes, its use of complementary approaches/datasets, and its examination of transcriptional elongation regulatory mechanisms in erythroid maturation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL032262-30
Application #
8205188
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2011-08-15
Project End
2016-06-30
Budget Start
2011-08-15
Budget End
2012-06-30
Support Year
30
Fiscal Year
2011
Total Cost
$333,828
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Chung, Jacky; Wittig, Johannes G; Ghamari, Alireza et al. (2017) Erythropoietin signaling regulates heme biosynthesis. Elife 6:
Kafina, Martin D; Paw, Barry H (2017) Intracellular iron and heme trafficking and metabolism in developing erythroblasts. Metallomics 9:1193-1203
Doulatov, Sergei; Vo, Linda T; Macari, Elizabeth R et al. (2017) Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med 9:
Seguin, Alexandra; Takahashi-Makise, Naoko; Yien, Yvette Y et al. (2017) Reductions in the mitochondrial ABC transporter Abcb10 affect the transcriptional profile of heme biosynthesis genes. J Biol Chem 292:16284-16299
Grillo, Anthony S; SantaMaria, Anna M; Kafina, Martin D et al. (2017) Restored iron transport by a small molecule promotes absorption and hemoglobinization in animals. Science 356:608-616
Yien, Yvette Y; Ducamp, Sarah; van der Vorm, Lisa N et al. (2017) Mutation in human CLPX elevates levels of ?-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A 114:E8045-E8052
Gao, Xiaofei; Lee, Hsiang-Ying; Li, Wenbo et al. (2017) Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A 114:10107-10112
Perlin, Julie R; Robertson, Anne L; Zon, Leonard I (2017) Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J Exp Med 214:2817-2827
Perlin, Julie R; Sporrij, Audrey; Zon, Leonard I (2017) Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl) 95:809-819
van Rooij, Frank J A; Qayyum, Rehan; Smith, Albert V et al. (2017) Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. Am J Hum Genet 100:51-63

Showing the most recent 10 out of 194 publications