The global health burden ofthe major hemoglobin disorders, sickle cell anemia and B-thalassemia, is enormous and predicted to grow. Increased fetal hemoglobin (HbF) greatly ameliorates the morbidity and mortality of these disorders. A long sought goal is directed reactivation of HbF expression in adults with hemoglobin disorders. Largely through human genetic studies, substantial progress has been made in understanding the regulatory factors controlling the fetal (a2Y2) to adult (a2B2) switch and how HbF silencing is maintained in the adult. A premise of the proposed work is that fundamental findings on hemoglobin switching provide a platform for establishing mechanism-based approaches to the identification of small molecules that induce HbF in adult erythroid cells. If successful in this overall goal, new therapies may be developed for treatment of patients with the major hemoglobin disorders. This proposal encompasses three independent, but interrelated, aims. First, the mechanisms by which the gene encoding BCL11A, a central repressor of HbF expression, is regulated will be explored using high-resolution nascent transcription mapping, chromatin occupancy, and assays of putative cis-regulatory elements. Down-regulation of BCL11A expression or function provides a direct route to relief from HbF silencing. An additional goal of this aim isalso to determine how genetic variation in the BCL1 IA gene influences expression of BCL11A itself, as this knowledge may lead to approaches to direct down-regulation of BCL11A expression. Second, high throughput screening for small molecule inducers of HbF will be performed in cultured erythroid cells, and promising """"""""hits"""""""" will be evaluated further for the pathways affected and for optimization as therapeutics. Third, screens with genome-wide short hairpin RNA (shRNA) and open reading frame (ORF) libraries will be performed to identify novel genes/pathways for induction of silenced HbF in primary human CD34 derived erythroid progenitors. Through the multidisciplinary approaches in this proposal basic findings on HbF regulation will be translated to advance identification and development of new therapeutics for patients with hemoglobin disorders.

Public Health Relevance

This project addresses the reactivation of fetal hemoglobin (HbF) in adult erythroid cells. The topic is directly relevant to human hemoglobin disorders, as reactivation of HbF would constitute an effective treatment strategy for affected individuals.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL032262-32
Application #
8515494
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
32
Fiscal Year
2013
Total Cost
$409,321
Indirect Cost
$174,079
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Blaser, Bradley W; Zon, Leonard I (2018) Making HSCs in vitro: don't forget the hemogenic endothelium. Blood 132:1372-1378
Kafina, Martin D; Paw, Barry H (2018) Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods Mol Biol 1698:11-36
Clement, Kendell; Farouni, Rick; Bauer, Daniel E et al. (2018) AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34:i202-i210
Liu, Frances D; Tam, Kimberley; Pishesha, Novalia et al. (2018) Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 9:268
Huang, Nai-Jia; Lin, Ying-Cing; Lin, Chung-Yueh et al. (2018) Enhanced phosphocholine metabolism is essential for terminal erythropoiesis. Blood 131:2955-2966
Schoonenberg, Vivien A C; Cole, Mitchel A; Yao, Qiuming et al. (2018) CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol 19:169
Lessard, Samuel; Beaudoin, Mélissa; Orkin, Stuart H et al. (2018) 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum Mol Genet 27:1411-1420
Esrick, Erica B; Bauer, Daniel E (2018) Genetic therapies for sickle cell disease. Semin Hematol 55:76-86
Yien, Yvette Y; Shi, Jiahai; Chen, Caiyong et al. (2018) FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 293:19797-19811
Wattrus, Samuel J; Zon, Leonard I (2018) Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2:3063-3069

Showing the most recent 10 out of 215 publications