The objective of this Program Project Grant continues to concentrate on the role of the cytochrome P450 (CYP)-derived eicosanoids in the regulation of renal and vascular function and in the control of blood pressure. This Program provided paradigms and scientific leads for a framework of CYP-eicosanoid research in the field of hypertension. The relevance ofthis research to human health is highlighted in recent studies by Program investigators and others demonstrating the molecular and functional association between CYP-eicosanolds and cardiovascular disease including diabetes, stroke and hypertension. This proposal builds on this foundation and brings novel concepts and new directions to this area of research. It incorporates the vascular and renal mechanisms and the inflammatory component of hypertension in terms of interactions between the CYP-derived eicosanoids, EETs and 20-HETE, and two distinct regulatory circuits, the renin-angiotensin system (RAS) and the heme oxygenases (HO). This theme is depicted in three projects. Project 1 focuses on the interactions between the CYP4A-derived 20-HETE and the renin angiotensin system and investigate the role of endothelial ACE in 20-HETE-mediated vascular dysfunction and hypertension. Project 2 examines the role of K+ intake and angiotensin II in regulating the inhibitory effect of CYP2C44-dependent EETs on sodium transport (epithelial Na+ channel) in the cortical collecting duct and its impact on hypertension. Project 3 determines the molecular mechanisms by which an interplay between HO-1 and EETs modulates adipocyte function and adiponectin levels to prevent the development of vascular dysfunction in obesity-induced hypertension. These projects will be supported by three Cores: Core A provides administrative support. Core B provides LC-MS/MS-based measurements of eicosanoids. Core C provides molecular, genotypic and phenotypic support for animal research. This Program Project combines interdisciplinary approach to explore the integrative biology of EETs and HETEs, key modulators of renal salt handling, vascular endothelial integrity and vascular tone, in the pathophysiology of hypertension and cardiovascular disease. The objective of this Program Project Grant continues to concentrate on the role of the cytochrome P450 (CYP)-derived eicosanoids in the regulation of renal and vascular function and in the control of blood pressure. This Program provided paradigms and scientific leads for a framework of CYP-eicosanoid research in the field of hypertension. The relevance ofthis research to human health is highlighted in recent studies by Program investigators and others demonstrating the molecular and functional association between CYP-eicosanolds and cardiovascular disease including diabetes, stroke and hypertension. This proposal builds on this foundation and brings novel concepts and new directions to this area of research. It incorporates the vascular and renal mechanisms and the inflammatory component of hypertension in terms of interactions between the CYP-derived eicosanoids, EETs and 20-HETE, and two distinct regulatory circuits, the renin-angiotensin system (RAS) and the heme oxygenases (HO). This theme is depicted in three projects. Project 1 focuses on the interactions between the CYP4A-derived 20-HETE and the renin angiotensin system and investigate the role of endothelial ACE in 20-HETE-mediated vascular dysfunction and hypertension. Project 2 examines the role of K+ intake and angiotensin II in regulating the inhibitory effect of CYP2C44-dependent EETs on sodium transport (epithelial Na+ channel) in the cortical collecting duct and its impact on hypertension. Project 3 determines the molecular mechanisms by which an interplay between HO-1 and EETs modulates adipocyte function and adiponectin levels to prevent the development of vascular dysfunction in obesity-induced hypertension. These projects will be supported by three Cores: Core A provides administrative support. Core B provides LC-MS/MS-based measurements of eicosanoids. Core C provides molecular, genotypic and phenotypic support for animal research. This Program Project combines interdisciplinary approach to explore the integrative biology of EETs and HETEs, key modulators of renal salt handling, vascular endothelial integrity and vascular tone, in the pathophysiology of hypertension and cardiovascular disease. ular tone, in the pathophysiology of hypertension and cardiovascular disease.

Public Health Relevance

Hypertension, obesity and diabetes are leading causes of cardiovascular and renal disease morbidity and mortality, and their prevalence, complexity, and multiple clinical and socio-economical consequences make them a major health challenge. The molecular basis of these diseases needs to be fully defined. This Program Project provides a unique Interdisciplinary approach to broaden our understanding and identify new targets for therapeutic development.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL034300-28
Application #
8447431
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Maric-Bilkan, Christine
Project Start
1997-09-01
Project End
2016-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
28
Fiscal Year
2013
Total Cost
$2,181,569
Indirect Cost
$619,560
Name
New York Medical College
Department
Pharmacology
Type
Schools of Medicine
DUNS #
041907486
City
Valhalla
State
NY
Country
United States
Zip Code
10595
Elijovich, Fernando; Milne, Ginger L; Brown, Nancy J et al. (2018) Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 71:346-355
Rocic, Petra; Schwartzman, Michal Laniado (2018) 20-HETE in the regulation of vascular and cardiac function. Pharmacol Ther 192:74-87
Singh, S P; McClung, J A; Bellner, L et al. (2018) CYP-450 Epoxygenase Derived Epoxyeicosatrienoic Acid Contribute To Reversal of Heart Failure in Obesity-Induced Diabetic Cardiomyopathy via PGC-1 ? Activation. Cardiovasc Pharm Open Access 7:
Schragenheim, Joseph; Bellner, Lars; Cao, Jian et al. (2018) EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter. Prostaglandins Other Lipid Mediat 137:30-39
Soler, Amanda; Hunter, Ian; Joseph, Gregory et al. (2018) Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 117:88-99
Garcia, Victor; Gilani, Ankit; Shkolnik, Brian et al. (2017) 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (Gq) to Affect Vascular Function and Trigger Hypertension. Circ Res 120:1776-1788
Sodhi, Komal; Srikanthan, Krithika; Goguet-Rubio, Perrine et al. (2017) pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet. Sci Rep 7:193
Wang, Lijun; Zhang, Chengbiao; Su, Xiao-Tong et al. (2017) PGF2?regulates the basolateral K channels in the distal convoluted tubule. Am J Physiol Renal Physiol 313:F254-F261
Zhang, Hui; Falck, John R; Roman, Richard J et al. (2017) Upregulation of 20-HETE Synthetic Cytochrome P450 Isoforms by Oxygen-Glucose Deprivation in Cortical Neurons. Cell Mol Neurobiol 37:1279-1286
Pandey, Varunkumar; Garcia, Victor; Gilani, Ankit et al. (2017) The Blood Pressure-Lowering Effect of 20-HETE Blockade in Cyp4a14(-/-) Mice Is Associated with Natriuresis. J Pharmacol Exp Ther 363:412-418

Showing the most recent 10 out of 468 publications