CYP epoxygenase-dependent arachidonic acid (AA) metabolite, 11,12-epoxyeicosatrienoic acid (EET), inhibits epithelial Na channel (ENaC) in the cortical collecting duct (CCD). The main goal ofthe present proposal is to examine the role of a high K (HK) intake and angiotensin II (Angll) in regulating the effect of CYP2C44-dependent AA metabolism on ENaC in the CCD. A HK intake has been shown to increase renal Na excretion thereby antagonizing the high salt intake-induced hypertension. However, the mechanism by which a HK intake minimizes the salt-intake-induced hypertension is not completely understood. Our recent study demonstrates that a HK intake stimulates the expression of CYP2C44 homologue in the rat kidney. Our preliminary data have also shown that AA fails while 11,12-EET is capable to block ENaC in the CCD of CYP2C44(-/-) mice, suggesting that CYP2C44-dependent 11,12-EET generation is responsible for AAmediated inhibition of ENaC. Genetic deletion of CYP2C44 also causes the salt-sensitive and dietary Ksensitive hypertension. Thus, we will test the hypothesis that 11,12-EETgenerated by CYP2C44 homologue in the aldosterone-sensitive nephron (ASDN) is a HK-induced antihypertensive factor which inhibit ENaC and Na absorption in ASDN. The effect of a HK intake on CYP2C44 activity may be the result of suppressing type I angiotensin 11 receptor (AT1R) because Inhibiting ATI R with valsartan or deleting ATI R mimics the effect of a HK intake and stimulates CYP2C44 expression and enhances AA-induced inhibition of ENaC in tem (RAS) enhances whereas stimulation of RAS diminishes the inhibitory effect of CYP2C44-dependent AA metabolism on ENaC and Na transport in the ASDN. We propose to test that CYP2C44-dependent AA metabolism inhibits Na transport and ENaC in ASDN in response to a HK intake;to investigate whether suppressing AT1R by a HK intake is responsible for enhancing AA and 11,12-EET-mediated inhibition of ENaC;and to test that Angll stimulates ENaC through suppressing CYP-epoxygenase and increasing reactive oxygen species (ROS) generation which minimizes the inhibitory effect of AA and 11,12-EET on ENaC.

Public Health Relevance

The physiological relevance of the study is to illustrate the underiying mechanism by which a HK intake suppresses renal Na transport in the ASDN and decreases blood pressure. In addition, the proposal will identify a novel mechanism by which Angll stimulates Na transport in the ASDN by suppressing CYPepoxygenase dependent metabolism and minimizing EET-induced inhibition of ENaC .

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL034300-29
Application #
8644834
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
29
Fiscal Year
2014
Total Cost
$406,427
Indirect Cost
$150,898
Name
New York Medical College
Department
Type
DUNS #
041907486
City
Valhalla
State
NY
Country
United States
Zip Code
10595
Abraham, Nader G; Junge, Joshua M; Drummond, George S (2016) Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 37:17-36
Singh, Shailendra P; Schragenheim, Joseph; Cao, Jian et al. (2016) PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 125:8-18
Kizub, Igor V; Lakhkar, Anand; Dhagia, Vidhi et al. (2016) Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. Am J Physiol Lung Cell Mol Physiol 310:L772-83
Peterson, Stephen J; Vanella, Luca; Gotlinger, Katherine et al. (2016) Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins Other Lipid Mediat 123:68-77
Garcia, Victor; Shkolnik, Brian; Milhau, Laura et al. (2016) 20-HETE Activates the Transcription of Angiotensin-Converting Enzyme via Nuclear Factor-κB Translocation and Promoter Binding. J Pharmacol Exp Ther 356:525-33
Froogh, Ghezal; Qin, Jun; Kandhi, Sharath et al. (2016) Female-favorable attenuation of coronary myogenic constriction via reciprocal activations of epoxyeicosatrienoic acids and nitric oxide. Am J Physiol Heart Circ Physiol 310:H1448-54
Qin, Jun; Le, Yicong; Froogh, Ghezal et al. (2016) Sexually dimorphic adaptation of cardiac function: roles of epoxyeicosatrienoic acid and peroxisome proliferator-activated receptors. Physiol Rep 4:
Wang, Wen-Hui (2016) Basolateral Kir4.1 activity in the distal convoluted tubule regulates K secretion by determining NaCl cotransporter activity. Curr Opin Nephrol Hypertens 25:429-35
Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R et al. (2016) Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353:1144-7
Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad et al. (2016) Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy. Sci Rep 6:34592

Showing the most recent 10 out of 421 publications