CYP epoxygenase-dependent arachidonic acid (AA) metabolite, 11,12-epoxyeicosatrienoic acid (EET), inhibits epithelial Na channel (ENaC) in the cortical collecting duct (CCD). The main goal ofthe present proposal is to examine the role of a high K (HK) intake and angiotensin II (Angll) in regulating the effect of CYP2C44-dependent AA metabolism on ENaC in the CCD. A HK intake has been shown to increase renal Na excretion thereby antagonizing the high salt intake-induced hypertension. However, the mechanism by which a HK intake minimizes the salt-intake-induced hypertension is not completely understood. Our recent study demonstrates that a HK intake stimulates the expression of CYP2C44 homologue in the rat kidney. Our preliminary data have also shown that AA fails while 11,12-EET is capable to block ENaC in the CCD of CYP2C44(-/-) mice, suggesting that CYP2C44-dependent 11,12-EET generation is responsible for AAmediated inhibition of ENaC. Genetic deletion of CYP2C44 also causes the salt-sensitive and dietary Ksensitive hypertension. Thus, we will test the hypothesis that 11,12-EETgenerated by CYP2C44 homologue in the aldosterone-sensitive nephron (ASDN) is a HK-induced antihypertensive factor which inhibit ENaC and Na absorption in ASDN. The effect of a HK intake on CYP2C44 activity may be the result of suppressing type I angiotensin 11 receptor (AT1R) because Inhibiting ATI R with valsartan or deleting ATI R mimics the effect of a HK intake and stimulates CYP2C44 expression and enhances AA-induced inhibition of ENaC in tem (RAS) enhances whereas stimulation of RAS diminishes the inhibitory effect of CYP2C44-dependent AA metabolism on ENaC and Na transport in the ASDN. We propose to test that CYP2C44-dependent AA metabolism inhibits Na transport and ENaC in ASDN in response to a HK intake;to investigate whether suppressing AT1R by a HK intake is responsible for enhancing AA and 11,12-EET-mediated inhibition of ENaC;and to test that Angll stimulates ENaC through suppressing CYP-epoxygenase and increasing reactive oxygen species (ROS) generation which minimizes the inhibitory effect of AA and 11,12-EET on ENaC.

Public Health Relevance

The physiological relevance of the study is to illustrate the underiying mechanism by which a HK intake suppresses renal Na transport in the ASDN and decreases blood pressure. In addition, the proposal will identify a novel mechanism by which Angll stimulates Na transport in the ASDN by suppressing CYPepoxygenase dependent metabolism and minimizing EET-induced inhibition of ENaC .

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL034300-29
Application #
8644834
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
29
Fiscal Year
2014
Total Cost
$406,427
Indirect Cost
$150,898
Name
New York Medical College
Department
Type
DUNS #
041907486
City
Valhalla
State
NY
Country
United States
Zip Code
10595
Wu, Cheng-Chia; Gupta, Tanush; Garcia, Victor et al. (2014) 20-HETE and blood pressure regulation: clinical implications. Cardiol Rev 22:1-12
Abraham, Nader G; Sodhi, Komal; Silvis, Anne M et al. (2014) CYP2J2 targeting to endothelial cells attenuates adiposity and vascular dysfunction in mice fed a high-fat diet by reprogramming adipocyte phenotype. Hypertension 64:1352-61
Capdevila, Jorge H; Pidkovka, Nataliya; Mei, Shaojun et al. (2014) The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. J Biol Chem 289:4377-86
Hinds Jr, Terry D; Sodhi, Komal; Meadows, Charles et al. (2014) Increased HO-1 levels ameliorate fatty liver development through a reduction of heme and recruitment of FGF21. Obesity (Silver Spring) 22:705-12
Cheng, Jennifer; Edin, Matthew L; Hoopes, Samantha L et al. (2014) Vascular characterization of mice with endothelial expression of cytochrome P450 4F2. FASEB J 28:2915-31
Hao, Shoujin; Bellner, Lars; Zhao, Hong et al. (2014) NFAT5 is protective against ischemic acute kidney injury. Hypertension 63:e46-52
Chen, Li; Ackerman, Rachel; Saleh, Mohamed et al. (2014) 20-HETE regulates the angiogenic functions of human endothelial progenitor cells and contributes to angiogenesis in vivo. J Pharmacol Exp Ther 348:442-51
Issan, Yossi; Kornowski, Ran; Aravot, Dan et al. (2014) Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress. PLoS One 9:e92246
Wang, Wen-Hui; Zhang, Chengbiao; Lin, Dao-Hong et al. (2014) Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. Am J Physiol Renal Physiol 307:F453-60
Sodhi, K; Puri, N; Kim, D H et al. (2014) PPARýý binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int J Obes (Lond) 38:456-65

Showing the most recent 10 out of 371 publications