(See inslructions): Core C is composed of two modules: the Vector Module and the Animal Module. This core will provide the resources and expertise needed for the efficient generation of a wide array of gene-transfer technologies, genotyping ofthe growing numbers of transgenic animal models (breeding colonies) used by Program Project Investigators, and for phenotypic characterization of animal models including telemetry-based blood pressure measurements, assessment of renal and vascular functions, and histology. The Vector Module will develop and construct HIV-1-based Lentivirus vectors capable of targeting specific cells using endothelial, smooth muscle, adipocytes and transport epithelial cell-specific promoters (e.g., SM22 alpha, VECAD, AP2, THP, NKCC2) to overexpress and suppress (Antisense and shRNA) genes of interest along with corresponding controls, i.e., GFP, catalytically inactive enzymes and non-specific shRNA. The Vector Module will isolate, titer and concentrate purified viruses as well as assist investigators in administering viral vectors, assessing efficiency of viral-mediated gene expression, and genotyping to ensure the quality of breeding colonies for Program Project Investigators. The Animal Module will provide technologies and services including measurement of arterial blood pressure by radiotelemetry and tail-cuff methodology, assessment of renal function (GFR), preparation of tissues for histology/pathology and immunohistochemistry, and assistance in measuring vascular reactivity (wire and pressure myographs). An understanding ofthe molecular mechanism by which CYP-derived eicosanoids contribute to the regulation of blood pressure is contingent upon the identification of appropriate methods of gene manipulation and ability to subsequently assess pathophysiological changes. The centralization of these services within Core C will provide efficient, standardized and accurate utilization of molecular and physiological resources and procedures that are essential for each of the projects.

Public Health Relevance

The ability to specifically target gene expression in a cell-specific manner is essential to discerning interactions between components of blood pressure control, including the kidney, the vasculature and adipocytes. Likewise it is vital to be able to accurately measure pathophysiological changes in response to genetic, molecular, and pharmacological interventions.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL034300-29
Application #
8644839
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
29
Fiscal Year
2014
Total Cost
$356,781
Indirect Cost
$132,476
Name
New York Medical College
Department
Type
DUNS #
041907486
City
Valhalla
State
NY
Country
United States
Zip Code
10595
Abraham, Nader G; Junge, Joshua M; Drummond, George S (2016) Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 37:17-36
Singh, Shailendra P; Schragenheim, Joseph; Cao, Jian et al. (2016) PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 125:8-18
Kizub, Igor V; Lakhkar, Anand; Dhagia, Vidhi et al. (2016) Involvement of gap junctions between smooth muscle cells in sustained hypoxic pulmonary vasoconstriction development: a potential role for 15-HETE and 20-HETE. Am J Physiol Lung Cell Mol Physiol 310:L772-83
Peterson, Stephen J; Vanella, Luca; Gotlinger, Katherine et al. (2016) Oxidized HDL is a potent inducer of adipogenesis and causes activation of the Ang-II and 20-HETE systems in human obese females. Prostaglandins Other Lipid Mediat 123:68-77
Garcia, Victor; Shkolnik, Brian; Milhau, Laura et al. (2016) 20-HETE Activates the Transcription of Angiotensin-Converting Enzyme via Nuclear Factor-κB Translocation and Promoter Binding. J Pharmacol Exp Ther 356:525-33
Froogh, Ghezal; Qin, Jun; Kandhi, Sharath et al. (2016) Female-favorable attenuation of coronary myogenic constriction via reciprocal activations of epoxyeicosatrienoic acids and nitric oxide. Am J Physiol Heart Circ Physiol 310:H1448-54
Qin, Jun; Le, Yicong; Froogh, Ghezal et al. (2016) Sexually dimorphic adaptation of cardiac function: roles of epoxyeicosatrienoic acid and peroxisome proliferator-activated receptors. Physiol Rep 4:
Wang, Wen-Hui (2016) Basolateral Kir4.1 activity in the distal convoluted tubule regulates K secretion by determining NaCl cotransporter activity. Curr Opin Nephrol Hypertens 25:429-35
Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R et al. (2016) Dirhodium-catalyzed C-H arene amination using hydroxylamines. Science 353:1144-7
Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad et al. (2016) Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy. Sci Rep 6:34592

Showing the most recent 10 out of 421 publications