This application is the resubmission for the competing continuation of a program project grant that was initiated in 1986. The proposed research is the outgrowth of the program's progress during the current funding period, and consists of three projects and two supporting cores, focused on the central theme of digitalis-induced signaling through the cardiac Na*7K+-ATPase. The participating investigators with expertise in membrane biochemistry, protein chemistry, molecular genetics, cell biology, and integrative cardiovascular physiology/ pharmacology will combine their efforts to conduct the following studies: Project I attempts to determine the molecular and cellular mechanisms by which the digitalis-induced activation of class 1A PI3K/Akt pathway leads to cardiac myocyte hypertrophy, and to assess if this seemingly benign hypertrophy is capable of antagonizing the deleterious effects of pathological hypertrophy and its consequences. Project 11 concentrates on the unraveling of the molecular interactions that constitute the formation of the Na+/K+- ATPase/Src complex, and on the evaluation of this complex as the receptor for the initiation of the multiple digitalis-induced signaling pathways and their functional consequences in the heart. Project III focuses on the established digitalis-induced communication between cardiac sarcolemmal Na+/K+-ATPase and ATPsensitive K+ channels of cardiac mitochondria, and proposes to determine the molecular and subcellular mechanisms of this communication, and the resulting digitalis-induced protection of the heart against ischemia-reperfusion injury. The core units are designed to provide administrative support and efficient management of the experimental animals and other shared resources of the program. These proposed studies are expected to expand knowledge on the newly appreciated physiological roles of cardiac NaVK4- ATPase, and to provide the bases for novel approaches to the prevention and treatment of ischemic heart disease and heart failure.

Public Health Relevance

Digitalis is the oldest of the drugs that are commonly used to treat heart failure patients with limited success. We propose the continuation of our recent research that has revealed previously unrecognized effects of digitalis on the heart cells, and suggests that if this inexpensive and readily available drug is used in new ways, it may become a safe, effective, and world-wide treatment for heart failure and for prevention of heart attacks.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL036573-24
Application #
8250445
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Adhikari, Bishow B
Project Start
1986-07-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
24
Fiscal Year
2012
Total Cost
$1,453,353
Indirect Cost
$375,943
Name
University of Toledo
Department
Physiology
Type
Schools of Medicine
DUNS #
807418939
City
Toledo
State
OH
Country
United States
Zip Code
43614
Duan, Qiming; Xu, Yunhui; Marck, Pauline V et al. (2018) Preconditioning and Postconditioning by Cardiac Glycosides in the Mouse Heart. J Cardiovasc Pharmacol 71:95-103
Duan, Qiming; Xu, Yunhui; Marck, Pauline et al. (2017) Pre- and Post-conditioning by Cardiac Glycosides in the Mouse Heart. J Cardiovasc Pharmacol :
Morrill, Gene A; Kostellow, Adele B; Liu, Lijun et al. (2016) Evolution of the ?-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology. J Mol Evol 82:183-98
Wu, Jian; Li, Daxiang; Du, Lingling et al. (2015) Ouabain prevents pathological cardiac hypertrophy and heart failure through activation of phosphoinositide 3-kinase ? in mouse. Cell Biosci 5:64
Duan, Qiming; Madan, Namrata D; Wu, Jian et al. (2015) Role of phosphoinositide 3-kinase IA (PI3K-IA) activation in cardioprotection induced by ouabain preconditioning. J Mol Cell Cardiol 80:114-25
Mehta, Gaurav; Kumarasamy, Sivarajan; Wu, Jian et al. (2015) MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy. J Mol Cell Cardiol 88:101-10
Akkuratov, Evgeny E; Wu, Jian; Sowa, David et al. (2015) Ouabain-Induced Signaling and Cell Survival in SK-N-SH Neuroblastoma Cells Differentiated by Retinoic Acid. CNS Neurol Disord Drug Targets 14:1343-9
Li, Caixia; Culver, Silas A; Quadri, Syed et al. (2015) High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion. Am J Physiol Endocrinol Metab 309:E802-10
Balasubramanian, Priya; Varde, Pratibha A; Abdallah, Simon Labib et al. (2015) Differential effects of prenatal stress on metabolic programming in diet-induced obese and dietary-resistant rats. Am J Physiol Endocrinol Metab 309:E582-8
Gable, Marjorie E; Abdallah, Simon L; Najjar, Sonia M et al. (2014) Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase. Biochem Biophys Res Commun 446:1151-4

Showing the most recent 10 out of 247 publications