Digitalis drugs (cardiac glycosides, cardiotonic steroids) have been valuable for the management of heart failure and cardiac arrhythmias. Recent studies have demonstrated that the Na/K-ATPase has a novel receptor function in addition to its well described pumping function;i.e., in response to a ligand-like effect of a digitalis compound, Na/K-ATPase activates protein tyrosine kinases. Specifically, we have shown that Na/K-ATPase directly interacts with Src to form a functional digitalis receptor, and ouabain binding to this receptor stimulates the associated Src kinase. This, in turn, results in the increased protein tyrosine phosphorylation and recruitment of protein kinases and lipid kinases to form a functional signalosome that transmits the ouabain signal to different intracellular compartments. Concomitantly, activation of this receptor also induces endocytosis of the signalosome which may terminate the signaling events, or exert various intracellular effects. Moreover, we have recently mapped the interaction domains between the or subunit of Na/K-ATPase and Src. These interactions illustrate a unique and Na/K-ATPase-specific cellular mechanism of Src regulation. Furthermore, we have been able to target the identified interacting domains, and have developed a cci-specific peptide that disrupts the formation of Na/K-ATPase/Src receptor complex and inhibits Src activity. This application is built upon these new discoveries and preliminary findings, and is aimed to further delineate the molecular interactions that constitute the formation of the Na/K-ATPase/Src receptor complex, and to evaluate the functionality of this receptor in digitalis-activated signal transduction. To accomplish these goals, we propose the following three Specific Aims. First, we will test the hypothesis that the formation of a functional Na/K-ATPase/Src receptor complex requires a pair of interactions involving the Na/K-ATPase a, A-domain/Src SH2 domain, and the a, N-domain/Src kinase domain. Second, we will develop and employ cell permeable Na/K-ATPase-specific Src inhibitors/activators to test the hypothesis that activation of the Na/K-ATPase/Src receptor is responsible for the pharmacological/signaling actions of ouabain in the heart. Finally, we will employ genetically modified animal models to further evaluate the functionality of the Na/K-ATPase/Src receptor complex in the heart. The results of these studies will provide new insights into the molecular mechanism of Na/K-ATPase-mediated signal transduction and digitalis pharmacology. Moreover, with a better understanding of these new cellular signaling mechanisms, new targets for developing effective therapeutic interventions for the treatment or prevention of human diseases, including cardiac dysfunctions, may be established.

Public Health Relevance

We have discovered a new cellular receptor Na/K-ATPase/Src complex that plays an important role in regulation of cellular activities in cardiac as well as other tissues. Understanding the molecular mechanism by which this newly discovered receptor operates will help us in developing more effective therapeutics for the treatment of cardiovascular and other diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Toledo
United States
Zip Code
Alshahrani, Musaed M; Yang, Eunice; Yip, Jana et al. (2014) CEACAM2 negatively regulates hemi (ITAM-bearing) GPVI and CLEC-2 pathways and thrombus growth in vitro and in vivo. Blood 124:2431-41
Najjar, Sonia M; Russo, Lucia (2014) CEACAM1 loss links inflammation to insulin resistance in obesity and non-alcoholic steatohepatitis (NASH). Semin Immunopathol 36:55-71
Gable, Marjorie E; Abdallah, Simon L; Najjar, Sonia M et al. (2014) Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na(+)/K(+)-ATPase. Biochem Biophys Res Commun 446:1151-4
Li, Daxiang; Wu, Jian; Bai, Yan et al. (2014) Isolation and culture of adult mouse cardiomyocytes for cell signaling and in vitro cardiac hypertrophy. J Vis Exp :
Ye, Qiqi; Lai, Fangfang; Banerjee, Moumita et al. (2013) Expression of mutant ýý1 Na/K-ATPase defective in conformational transition attenuates Src-mediated signal transduction. J Biol Chem 288:5803-14
Bai, Yan; Morgan, Eric E; Giovannucci, David R et al. (2013) Different roles of the cardiac Na+/Ca2+-exchanger in ouabain-induced inotropy, cell signaling, and hypertrophy. Am J Physiol Heart Circ Physiol 304:H427-35
Belliard, Aude; Sottejeau, Yoann; Duan, Qiming et al. (2013) Modulation of cardiac Na+,K+-ATPase cell surface abundance by simulated ischemia-reperfusion and ouabain preconditioning. Am J Physiol Heart Circ Physiol 304:H94-103
Najjar, Sonia M; Ledford, Kelly J; Abdallah, Simon L et al. (2013) Ceacam1 deletion causes vascular alterations in large vessels. Am J Physiol Endocrinol Metab 305:E519-29
Garlid, Keith D; Halestrap, Andrew P (2012) The mitochondrial K(ATP) channel--fact or fiction? J Mol Cell Cardiol 52:578-83
Liu, Changxuan; Bai, Yan; Chen, Yiliang et al. (2012) Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis. J Biol Chem 287:16390-8

Showing the most recent 10 out of 233 publications