Phosphorylated phosphatidylinositols (phosphoinositides) are a type of membrane bound phospholipid that impacts multiple diverse processes required during platelet activation. The overall goal of this project is to define the intracellular signaling pathways that Phosphatidylinositol Transfer Proteins (PITPs) contribute to the synthesis of phosphorylated phosphatidylinositols (phosphoinositides) in platelets, and to understand the role of PITPs in platelet biology. PITPs are a small protein family that has been found to bind and transfer phosphoinositide monomers from one cellular compartment to another in an energy-independent manner during vesicle trafficking and phospholipid signaling. Although there are no studies on the role of PITPs in hematopoietic cells, there is evidence in yeast cells that these proteins are essential for the biosynthesis and metabolism of phosphoinositides. Platelets have two dominant PITP family members, PITPa and PITPB. The overall hypothesis of this proposal is that the function of these PITP isoforms in platelets is not overlapping, and each is essential for the generation and spatial localization of discrete species of phosphoinositides within platelets. A secondary hypothesis is that the enzymatic activities of both PITP isoforms are necessary for normal platelet function ex vivo and in vivo. To understand the unique roles ofthe PITP isoforms in platelet biology. My laboratory has generated mice containing conditional null mutations in the PITPa and PITPP genes. The mature megakaryocytes and platelets of these mice lack PITPa, PiTPB, or both PITP isoforms, but the proteins are expressed normally in all other tissues. Loss of either isoform results in thrombocytopenia. Preliminary data also indicate that platelets lacking PITPa have a complete loss in the second messenger, lns(3,4,5)P3 (also known as 1P3) following stimulation by maximal doses of thrombin.
In Aim 1 of this proposal, we will determine the link between PITP isoforms and phosphoinositide synthesis, as well as analyze the contribution of PITPs to platelet signaling.
In Aim 2, i propose experiments designed to understand the distinct biochemical functions ofthe individual PITP isoforms.
In Aim 3, we will study the role of PITP isoforms in platelet activation ex vivo and in vivo.

Public Health Relevance

Activated ('sticky') platelets that form at sites of atherosclerosis are often the precipitating event for heart attacks and strokes. Our work demonstrates that two platelet proteins, PITPa and PITPa are important regulators of platelet activation. We believe that a better understanding ofthe events that regulate platelet activation will lead to new therapeutic approaches to prevent vascular occlusion, as well as lead to a better understanding of platelet biology .

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL040387-27
Application #
8849941
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
27
Fiscal Year
2015
Total Cost
$444,508
Indirect Cost
$167,296
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Capitano, Maegan; Zhao, Liang; Cooper, Scott et al. (2018) Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-?1 secretion and hematopoiesis in mice. Blood 132:1027-1038
Branchford, B R; Stalker, T J; Law, L et al. (2018) The small-molecule MERTK inhibitor UNC2025 decreases platelet activation and prevents thrombosis. J Thromb Haemost 16:352-363
Zhao, Baobing; Mei, Yang; Cao, Lan et al. (2018) Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest 128:125-140
Khandelwal, Sanjay; Ravi, Joann; Rauova, Lubica et al. (2018) Polyreactive IgM initiates complement activation by PF4/heparin complexes through the classical pathway. Blood 132:2431-2440
Villa, Carlos H; Pan, Daniel C; Johnston, Ian H et al. (2018) Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Adv 2:165-176
Ma, Peisong; Gupta, Shuchi; Sampietro, Sara et al. (2018) RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists. Blood Adv 2:2145-2155
Gupta, Shuchi; Cherpokova, Deya; Spindler, Markus et al. (2018) GPVI signaling is compromised in newly formed platelets after acute thrombocytopenia in mice. Blood 131:1106-1110
Xie, Zhigang; Hur, Seong Kwon; Zhao, Liang et al. (2018) A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis. Dev Cell 44:725-740.e4
Zhao, Liang; Thorsheim, Chelsea L; Suzuki, Aae et al. (2017) Phosphatidylinositol transfer protein-? in platelets is inconsequential for thrombosis yet is utilized for tumor metastasis. Nat Commun 8:1216
Kastelowitz, Noah; Tamura, Ryo; Onasoga, Abimbola et al. (2017) Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Sci Rep 7:4275

Showing the most recent 10 out of 290 publications