The mouse has become the preferred species for genetic manipulation, but approaches for characterizing the mouse cardiac phenotype and performing physiologic studies on cardiovascular function on the intact mouse heart in vivo generally have lagged behind the rapid advances in transgenic and gene-deletion technologies. This mouse physiology core will improve and apply miniaturized hemodynamic and imaging techniques for physiological studies, in intact adult mice, as well as in intact mouse embryos. Also, techniques for studying isolated cardiomyocytes will be available, along with an approach for viral transfection of the heart. Microsurgical techniques also have been devised in mice to produce chronic pressure overload on either the left and right ventricle, as well as chronic volume overload. Miniaturized imaging techniques for the heart involve transthoracic ultrasound (2-D, M-mode and Doppler echocardiography) and x-ray microangiography for adult mouse hearts, and intravital videomicroscopy for embryonic mouse hearts. High- fidelity catheter tip micromanometry is now available for assessing intracardiac pressures and myocardial contractility in anesthetized open or closed-chest animals, as well as in the unanesthetized state.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL046345-09
Application #
6336648
Study Section
Project Start
2000-08-01
Project End
2001-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
9
Fiscal Year
2000
Total Cost
$278,736
Indirect Cost
Name
University of California San Diego
Department
Type
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Dewan, Sukriti; McCabe, Kimberly J; Regnier, Michael et al. (2016) Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. J Phys Chem B 120:8264-75
Peter, Angela K; Bradford, William H; Dalton, Nancy D et al. (2016) Increased Echogenicity and Radiodense Foci on Echocardiogram and MicroCT in Murine Myocarditis. PLoS One 11:e0159971
Sheikh, Farah; Lyon, Robert C; Chen, Ju (2015) Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene 569:14-20
Israeli-Rosenberg, Sharon; Chen, Chao; Li, Ruixia et al. (2015) Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 29:374-84
Stroud, Matthew J; Banerjee, Indroneal; Veevers, Jennifer et al. (2014) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 114:538-48
Zemljic-Harpf, Alice E; Godoy, Joseph C; Platoshyn, Oleksandr et al. (2014) Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 127:1104-16
Lyon, Robert C; Mezzano, Valeria; Wright, Adam T et al. (2014) Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum Mol Genet 23:1134-50
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Bang, Marie-Louise; Gu, Yusu; Dalton, Nancy D et al. (2014) The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 9:e93638
Israeli-Rosenberg, Sharon; Manso, Ana Maria; Okada, Hideshi et al. (2014) Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res 114:572-586

Showing the most recent 10 out of 144 publications