The Embryonic Stem Cell Core will provide expertise and services related to production of differentiated cardiac myocytes from cultured embryonic stem cells. The cells provided will be for the design of experiments to perform the proposed structure-function studies of cardiac myocyte membrane and myofibrillar proteins. The services provided will be the growth, transfection, section and differentiation of embryonic stem (ES) cells in vitro. ES cells will be used as a means for examining the phenotypes of gene knock-outs or expression of mutant proteins on either a null or wild-type background. ES cells are a necessary method to analyze cardiac phenotypes in knock-outs that are prenatal lethals in vivo. ES cells also permit screening of mutant phenotypes before investing the time and funds to generate transgenic mice that express mutant proteins.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
3P01HL047053-08S1
Application #
6643679
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2002-06-01
Project End
2003-05-31
Budget Start
Budget End
Support Year
8
Fiscal Year
2002
Total Cost
$199,594
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Druckenbrod, Noah R; Powers, Patricia A; Bartley, Christopher R et al. (2008) Targeting of endothelin receptor-B to the neural crest. Genesis 46:396-400
Brickson, S; Fitzsimons, D P; Pereira, L et al. (2007) In vivo left ventricular functional capacity is compromised in cMyBP-C null mice. Am J Physiol Heart Circ Physiol 292:H1747-54
Stelzer, Julian E; Larsson, Lars; Fitzsimons, Daniel P et al. (2006) Activation dependence of stretch activation in mouse skinned myocardium: implications for ventricular function. J Gen Physiol 127:95-107
Stelzer, Julian E; Fitzsimons, Daniel P; Moss, Richard L (2006) Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Biophys J 90:4119-27
Singla, Dinender K; Hacker, Timothy A; Ma, Lining et al. (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195-200
Muthukumarana, Poorni A D S; Lyons, Gary E; Miura, Yuji et al. (2006) Evidence for functional inter-relationships between FOXP3, leukaemia inhibitory factor, and axotrophin/MARCH-7 in transplantation tolerance. Int Immunopharmacol 6:1993-2001
Stelzer, Julian E; Patel, Jitandrakumar R; Moss, Richard L (2006) Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol 128:261-72
Stelzer, Julian E; Patel, Jitandrakumar R; Moss, Richard L (2006) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 99:884-90
Balijepalli, Ravi C; Foell, Jason D; Hall, Duane D et al. (2006) Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103:7500-5
Stelzer, Julian E; Dunning, Sandy B; Moss, Richard L (2006) Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 98:1212-8

Showing the most recent 10 out of 103 publications