Fanconi's Anemia (FA) is a genetic disorder manifesting with typical congenital malformations, childhood onset progressive bone marrow failure and increased cancer risk. 13 genes responsible for FA have been cloned and together constitute the FA/BRCA pathway which functions to maintain genome stability and to ensure stem cell survival. This Program Project will use a multidisciplinary approach to dissecting the molecular pathophysiology of FA and to use this knowledge to enhance therapy for FA, especially small molecule intervention. The clinical disciplines represented by the investigators include pediatrics, medical genetics, hematology and oncology. The scientific areas of expertise include stem cell biology, DNA repair, molecular hematology, zebra fish genetics, mouse genetics, cytogenetics, gene therapy and drug discovery. Core A will use cell-based assays to screen for novel compounds and genes that positively impact the phenotypes of FA cells. New drugs discovered by screening and others derived from insights into pathophysiology will be systematically evaluated in all 3 projects. Project 1 uses zebrafish models of FA, projects 2 and 3 use FA knockout mice as well as pluripotent stem cells from human FA patients. These IPS cells generated by direct reprogramming will be provided by Core C. Cytogenetic abnormalities are a key feature of FA and Core B will provide support in this area. In addition to drug screening the projects will study genetic interactions of the FA/BRCA pathway, work on the non-canonical roles of FA proteins and explore gene repair as a novel approach for gene therapy in the disease.

Public Health Relevance

The significance of this Program Project is multifold in that therapeutic benefits for FA patients are likely. In addition, however, the work will shed light on generally important processes such as the maintenance of hematopoietic stem cells in the face of damage, leukemogenesis and the action of synthetic androgens in stem cells. Furthermore, drugs that benefit bone marrow failure and delay cancer in FA may well useful in other forms of aplastic anemia and cancer.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
Qasba, Pankaj
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Zhang, Qing-Shuo; Benedetti, Eric; Deater, Matthew et al. (2015) Oxymetholone therapy of fanconi anemia suppresses osteopontin transcription and induces hematopoietic stem cell cycling. Stem Cell Reports 4:90-102
Zhang, Qing-Shuo; Marquez-Loza, Laura; Sheehan, Andrea M et al. (2014) Evaluation of resveratrol and N-acetylcysteine for cancer chemoprevention in a Fanconi anemia murine model. Pediatr Blood Cancer 61:740-2
Kim, Hyungjin; Dejsuphong, Donniphat; Adelmant, Guillaume et al. (2014) Transcriptional repressor ZBTB1 promotes chromatin remodeling and translesion DNA synthesis. Mol Cell 54:107-18
Park, Eunmi; Kim, Hyungjin; Kim, Jung Min et al. (2013) FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol Cell 50:908-18
Zhang, Qing-Shuo; Watanabe-Smith, Kevin; Schubert, Kathryn et al. (2013) Fancd2 and p21 function independently in maintaining the size of hematopoietic stem and progenitor cell pool in mice. Stem Cell Res 11:687-92
Dao, Kim-Hien T; Rotelli, Michael D; Brown, Brieanna R et al. (2013) The PI3K/Akt1 pathway enhances steady-state levels of FANCL. Mol Biol Cell 24:2582-92
Mistry, Helena; Hsieh, Grace; Buhrlage, Sara J et al. (2013) Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 12:2651-62
Park, Eunmi; Kim, Jung Min; Primack, Benjamin et al. (2013) Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice. Mol Cell Biol 33:4360-70
Garbati, Michael R; Hays, Laura E; Keeble, Winifred et al. (2013) FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1* in macrophages. Blood 122:3197-205
Anur, Praveen; Yates, Jane; Garbati, Michael R et al. (2012) p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood 119:1992-2002

Showing the most recent 10 out of 81 publications