Overview and Specific Aims Core B will provide support for all four Projects by 1) performing vascular physiology and pharmacology experiments in the transgenic and knockout mouse models being investigated in this PPG, and 2) by coordinating the proposed studies with the Yale Mouse Metabolic Phenotyping Center (YMMC) for the detailed in vivo metabolic characterizations that are planned for several of the mouse models being studied in this Program. The proposed studies of mouse vascular physiology and metabolism being supported in this Core will provide a critical context for the data that will be generated by Program's proposed Common Experiment, which explores redox biochemistry and redox biomarkers in mouse endothelial cells. Dr. Michel, who has served as Director of the Animal Models of Arterial Dysfunction Core Lab during the current project period, is an experienced vascular biologist who has been involved in productive collaborations studying murine vascular physiology and pharmacology with the other Project Leaders. Dr. Gerald Shulman (see attached letter), a leading investigator in metabolism, is the director of the YMMC, and is already collaborating with Drs. Plutzky and Lee;Dr. Shulman will continue to consult on experimental design and analysis in the proposed studies, which are described in detail in all the individual Project descriptions above.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Brown, Jonathan D; Lin, Charles Y; Duan, Qiong et al. (2014) NF-?B directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56:219-31
Lee, Samuel; Min Kim, Soo; Dotimas, James et al. (2014) Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress. EMBO Mol Med 6:732-43
Taqueti, Viviany R; Di Carli, Marcelo F; Jerosch-Herold, Michael et al. (2014) Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 7:920-9
Zhao, Yuzheng; Yang, Yi; Loscalzo, Joseph (2014) Real-time assessment of the metabolic profile of living cells with genetically encoded NADH sensors. Methods Enzymol 542:349-67
Chatzizisis, Yiannis S; Blankstein, Ron; Libby, Peter (2014) Inflammation goes with the flow: implications for non-invasive identification of high-risk plaque. Atherosclerosis 234:476-8
Barroso, Madalena; Florindo, Cristina; Kalwa, Hermann et al. (2014) Inhibition of cellular methyltransferases promotes endothelial cell activation by suppressing glutathione peroxidase 1 protein expression. J Biol Chem 289:15350-62
Nallamshetty, Shriram; Le, Phuong T; Wang, Hong et al. (2014) Retinaldehyde dehydrogenase 1 deficiency inhibits PPAR?-mediated bone loss and marrow adiposity. Bone 67:281-91
Folco, Eduardo J; Sukhova, Galina K; Quillard, Thibaut et al. (2014) Moderate hypoxia potentiates interleukin-1? production in activated human macrophages. Circ Res 115:875-83
Kalwa, Hermann; Sartoretto, Juliano L; Martinelli, Roberta et al. (2014) Central role for hydrogen peroxide in P2Y1 ADP receptor-mediated cellular responses in vascular endothelium. Proc Natl Acad Sci U S A 111:3383-8
Shiroto, Takashi; Romero, Natalia; Sugiyama, Toru et al. (2014) Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One 9:e87871

Showing the most recent 10 out of 197 publications