Progressive and chronic airway inflammation and infection are hallmarks of cystic fibrosis (CF) lung disease. A reduction of the host inflammatory response could favorably modify the disease phenotype. Indeed this has been the goal of clinical trials with steroids and non-steroidal anti-inflammatory drugs. Another approach to reduce inflammation is to silence pro-inflammatory mediators by RNA interference (RNAi). Here, we propose to use several novel methods to accomplish RNAi in the airways. In one approach, we hypothesize that virally expressed inhibitory RNAs can effectively transduce airway epithelia and inhibit expression of our target genes. We will use methods developed in our laboratories for optimal inhibitory RNA expression. In a second approach, we will use peptide-siRNA complexes. In these experiments, we will take advantage of peptides that bind to airway epithelia to direct siRNA uptake and target gene silencing. For both viral and nonviral experiments, we will first test the effectiveness in vitro using well differentiated airway epithelia. Once optimized in vitro, the tools will be tested in vivo in wild type, and then CF pigs. Importantly, the methods we develop to deliver RNAi and reduce geneexpression in vitro and in vivo will have direct relevance to other pro-inflammatory targets, and newly identified participants in CF ainway disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051670-19
Application #
8382311
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
19
Fiscal Year
2012
Total Cost
$283,562
Indirect Cost
$91,028
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Pillay, Sirika; Zou, Wei; Cheng, Fang et al. (2017) AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR. J Virol :
Meyerholz, David K; Reznikov, Leah R (2017) Simple and reproducible approaches for the collection of select porcine ganglia. J Neurosci Methods 289:93-98
Sinn, P L; Hwang, B-Y; Li, N et al. (2017) Novel GP64 envelope variants for improved delivery to human airway epithelial cells. Gene Ther 24:674-679
Paemka, Lily; McCullagh, Brian N; Abou Alaiwa, Mahmoud H et al. (2017) Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth. J Cyst Fibros 16:471-474
Meyerholz, David K; Ofori-Amanfo, Georgina K; Leidinger, Mariah R et al. (2017) Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. J Histochem Cytochem 65:607-618
Li, Xiaopeng; Vargas Buonfiglio, Luis G; Adam, Ryan J et al. (2017) Cystic Fibrosis Transmembrane Conductance Regulator Potentiation as a Therapeutic Strategy for Pulmonary Edema: A Proof-of-Concept Study in Pigs. Crit Care Med 45:e1240-e1246
Ramsey, Bonnie W; Welsh, Michael J (2017) AJRCCM: 100-Year Anniversary. Progress along the Pathway of Discovery Leading to Treatment and Cure of Cystic Fibrosis. Am J Respir Crit Care Med 195:1092-1099
Cook, Daniel P; Adam, Ryan J; Zarei, Keyan et al. (2017) CF airway smooth muscle transcriptome reveals a role for PYK2. JCI Insight 2:
Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher et al. (2017) Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am J Respir Crit Care Med 195:1617-1628
Cooney, Ashley L; Abou Alaiwa, Mahmoud H; Shah, Viral S et al. (2016) Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 1:

Showing the most recent 10 out of 161 publications