Cystic fibrosis lung disease might be corrected by delivering a normal copy of the CFTR cDNA to sufficient epithelia to restore electrolyte and liquid transport. Towards this goal, our Project has developed lentiviral vectors based on feline immunodeficiency virus (FIV) because of their ability to integrate and persist. We also identified a number of virus envelopes ("pseudotypes") that confer apical entry on polarized epithelia. The testing of the utility of gene transfer for CF has been hindered by lack of an animal model that recapitulates the human phenotype. Recently, this PPG developed a pig CF model. Animals heterozygous for a CFTR null or AF508 knock in allele were generated. Remarkably, live born CFTR-/- and CFTR[-deltaF508] piglets share many features of human babies with CF including pancreatic insufficiency, meconium ileus, liver involvement, and respiratory abnormalities. We will use this animal model to evaluate the efficacy of lentiviral gene transfer in modifying CF pulmonary disease. There are 3 aims.
Aim 1. Which lentiviral pseudotype achieves the best apical targeting and persistent gene transfer? We propose a thorough comparison of several candidate envelopes in pig and human cells to select an optimal vector pseudotype. We hypothesize that one or more pseudotyped lentivirus will target surface airway epithelia that express CFTR and possess progenitor capacity.
Aim 2. Can we increase the gene transfer efficiency of the GP64 envelope by directed evolution on airway epithelia? We identified the baculovirus GP64 envelope as having very favorable properties for in vivo airway transduction. We hypothesize that we can further improve lentiviral gene transfer efficiency and specificity by directed evolution of GP64. We will use a reverse genetics system to engineer a replication competent GP64 pseudotyped VSV and perform serial passage on primary pig and human airway epithelia using wild type GP64 to evolve an ainway adapted envelope. In a complementary approach, the GP64 receptor binding domain will be randomly modified by PCR mutagenesis, and this library of novel lentivirus mutants screened on ainA/ay epithelia. These same directed evolution approaches can be applied to other candidates that emerge from Aim 1.
Aim 3. Will lentiviral gene delivery correct the CFTR defect and prevent or slow lung disease progression? We will perform gene transfer to the pig ainA/ays using our optimized vectors to identify the pseudotypes with efficient gene transfer and persistence. We hypothesize that FIV gene transfer of CFTR to the ainA/ays of CFTR[Delta F508/Delta F 508] pigs will prevent or significantly slow lung disease progression. Outcome measures will include in vivo bioelectrics, ligh resolution CT scans, screening for infection and inflammation by bronchoscopy, and other measures of lung health.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Iowa City
United States
Zip Code
Awadalla, Maged; Miyawaki, Shinjiro; Abou Alaiwa, Mahmoud H et al. (2014) Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition. Ann Biomed Eng 42:915-27
Gu, Xiaoling; Karp, Philip H; Brody, Steven L et al. (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50:637-46
Hoegger, Mark J; Fischer, Anthony J; McMenimen, James D et al. (2014) Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818-22
Griffin, M A; Restrepo, M S; Abu-El-Haija, M et al. (2014) A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 21:123-30
Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A et al. (2014) Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia. Mol Ther Nucleic Acids 3:e175
Abou Alaiwa, Mahmoud H; Beer, Alison M; Pezzulo, Alejandro A et al. (2014) Neonates with cystic fibrosis have a reduced nasal liquid pH; a small pilot study. J Cyst Fibros 13:373-7
Weldon, Sinéad; McNally, Paul; McAuley, Danny F et al. (2014) miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 190:165-74
Hoegger, Mark J; Awadalla, Maged; Namati, Eman et al. (2014) Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci U S A 111:2355-60
Berkebile, Abigail R; McCray Jr, Paul B (2014) Effects of airway surface liquid pH on host defense in cystic fibrosis. Int J Biochem Cell Biol 52:124-9
Gibson-Corley, K N; Olivier, A K; Meyerholz, D K (2013) Principles for Valid Histopathologic Scoring in Research. Vet Pathol :

Showing the most recent 10 out of 98 publications