The Core is structured so that all the work is performed by Core personnel. Individual investigators who wish to use cells or other materials or to develop new models discuss the type of cells needed, the culture conditions, and the overall goal of the experiment or project with Core personnel. Then, Core personnel provide the cells and models to the investigator. Frequently, the individual investigator and Core personnel work together to provide the optimal conditions (media, seeding density, duration of incubation, substrates, passage number, etc) required for a specific type of study. The development of new models is usually an iterative process, with investigators talking to the Core, Core personnel developing a model, the investigator evaluating it, and making suggestions, the Core personnel attempting to improve the model, and so on. The organization of the Core has several advantages, a) It provides the highest level of quality control. We rarely have infected cell lines and alterations in phenotype are detected eariy. b) It provides the best use of facilities, c) By having Core personnel do all the work of the Core, traffic and time conflicts are minimized, d) It provides PPG investigators with a highly experienced and innovative staff who are committed to developing models that will allow investigators to generate new insight into CF. The Core is located in approximately 550 square feet of space in rooms 567, 571, and 500B of the Eckstein Medical Research Building (EMRB). EMRB contains the laboratories of all 4 project Pis (Drs. Davidson, Welsh, McCray, and Zabner).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051670-20
Application #
8519511
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
20
Fiscal Year
2013
Total Cost
$269,974
Indirect Cost
$88,992
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Awadalla, Maged; Miyawaki, Shinjiro; Abou Alaiwa, Mahmoud H et al. (2014) Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition. Ann Biomed Eng 42:915-27
Gu, Xiaoling; Karp, Philip H; Brody, Steven L et al. (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50:637-46
Hoegger, Mark J; Fischer, Anthony J; McMenimen, James D et al. (2014) Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818-22
Griffin, M A; Restrepo, M S; Abu-El-Haija, M et al. (2014) A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 21:123-30
Krishnamurthy, Sateesh; Behlke, Mark A; Apicella, Michael A et al. (2014) Platelet Activating Factor Receptor Activation Improves siRNA Uptake and RNAi Responses in Well-differentiated Airway Epithelia. Mol Ther Nucleic Acids 3:e175
Abou Alaiwa, Mahmoud H; Beer, Alison M; Pezzulo, Alejandro A et al. (2014) Neonates with cystic fibrosis have a reduced nasal liquid pH; a small pilot study. J Cyst Fibros 13:373-7
Weldon, Sinéad; McNally, Paul; McAuley, Danny F et al. (2014) miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 190:165-74
Hoegger, Mark J; Awadalla, Maged; Namati, Eman et al. (2014) Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci U S A 111:2355-60
Berkebile, Abigail R; McCray Jr, Paul B (2014) Effects of airway surface liquid pH on host defense in cystic fibrosis. Int J Biochem Cell Biol 52:124-9
Gibson-Corley, K N; Olivier, A K; Meyerholz, D K (2013) Principles for Valid Histopathologic Scoring in Research. Vet Pathol :

Showing the most recent 10 out of 98 publications