Our lab group demonstrated the first successful CFTR gene transfer by AAV2CFTRto pulmonary epithelium of rodents, non-human primates, and human CF volunteers. We showed that AAV vectors have great potential as gene therapeutic agents. Studies originating from a prior budget period lead to the first use of rAAV in humans. Many pre-clinical and clinical trials showed that AAV vectors can be used safely. However, unlike our results in primates, CFTR mRNA expression has not been demonstrated in human studies. In both non-human primates and humans, transduction requires the instillation of large titers of recombinant AAV2. Thus the goal of current budget period was to evaluate new AAV-CFTRserotypes containing more powerful promoters of CFTR expression. This effort was successful and lead to the choice of AAV1-26-264CFTR driven by a powerful chicken beta actin (CBA) promoter. The overall goal the renewal is to provide the critical next steps in developing AAV1 -CFTR as a therapeutic agent. The hypothesis to be tested is that development of a new AAV1-26-264 vector serotype with CBA promoter delivered to the airways will be safe and result in increased levels of recombinant gene expression. Three overall questions will be addressed. Will dosing with a pseudotyped AAV 1 vector leads to increased expression from the recombinant vector? Will dosing with a pseudotyped AAV 1 vector leads to increased immune response? Does aerosol delivery of new higher titer AAV1-CFTRvectors administered to CF patients with Mild Lung Disease lead to widespread gene transfer and CFTR expression?

Public Health Relevance

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
da Silva, Adriana L; Martini, Sabrina V; Abreu, Soraia C et al. (2014) DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. J Control Release 180:125-33
Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K et al. (2014) Gene transfer properties and structural modeling of human stem cell-derived AAV. Mol Ther 22:1625-34
Schuster, Benjamin S; Kim, Anthony J; Kays, Joshua C et al. (2014) Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors. Mol Ther 22:1484-93
Salganik, Maxim; Aydemir, Fikret; Nam, Hyun-Joo et al. (2014) Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes. J Virol 88:1071-9
Suk, Jung Soo; Kim, Anthony J; Trehan, Kanika et al. (2014) Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release 178:8-17
Birket, Susan E; Chu, Kengyeh K; Liu, Linbo et al. (2014) A functional anatomic defect of the cystic fibrosis airway. Am J Respir Crit Care Med 190:421-32
Schuster, Benjamin S; Suk, Jung Soo; Woodworth, Graeme F et al. (2013) Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34:3439-46
Govindasamy, Lakshmanan; DiMattia, Michael A; Gurda, Brittney L et al. (2013) Structural insights into adeno-associated virus serotype 5. J Virol 87:11187-99
Cebotaru, Liudmila; Woodward, Owen; Cebotaru, Valeriu et al. (2013) Transcomplementation by a truncation mutant of cystic fibrosis transmembrane conductance regulator (CFTR) enhances ?F508 processing through a biomolecular interaction. J Biol Chem 288:10505-12
Kim, Anthony J; Boylan, Nicholas J; Suk, Jung Soo et al. (2012) Non-degradative intracellular trafficking of highly compacted polymeric DNA nanoparticles. J Control Release 158:102-7

Showing the most recent 10 out of 106 publications