Human induced pluripotent stem cells (iPSCs) have the potential to treat many diseases by autologous transplantation. However, before they can be used clinically, efficient and reproducible methods are required for their derivation and differentiation into therapeutic cell types. In the case of genetic diseases, methods for correcting disease-causing mutations also need to be developed. Here we will use this approach to design a treatment for thalassemia, which is caused by mutations in globin genes. This approach avoids the potential genotoxic complications of conventional gene therapy with retroviral vectors and should achieve consistent, regulated globin expression from the endogenous locus. We will derive IPSCs from the adult cells of patients with thalassemia using lentivirus and foamy virus vectors that express reprogramming transgenes. Some of the vectors will be designed for transient gene delivery to create transgene-free iPSCs. These IPSCs will be differentiated into hematopoietic cells to determine the best adult cell type and reprogramming vectors for creating iPSCs with hematopoietic potential. Adeno-associated virus gene targeting vectors will be used to correct the globin mutations in these thalassemic IPSCs, and globin expression will be studied after their differentiation into erythroid progeny. This research plan capitalizes on recent advances in the derivation of patient-specific stem cells, which in combination with gene correction constitutes a new paradigm for the treatment of genetic diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL053750-19
Application #
8463852
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
19
Fiscal Year
2013
Total Cost
$429,996
Indirect Cost
$124,647
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Deyle, David R; Hansen, R Scott; Cornea, Anda M et al. (2014) A genome-wide map of adeno-associated virus-mediated human gene targeting. Nat Struct Mol Biol 21:969-75
Wurm, Melanie; Kowalski, John; Heckl, Dirk et al. (2014) Ectopic expression of HOXC6 blocks myeloid differentiation and predisposes to malignant transformation. Exp Hematol 42:114-25.e4
Boulad, Farid; Wang, Xiuyan; Qu, Jinrong et al. (2014) Safe mobilization of CD34+ cells in adults with ?-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood 123:1483-6
Watts, Korashon L; Beard, Brian C; Wood, Brent L et al. (2014) No evidence of clonal dominance after transplant of HOXB4-expanded cord blood cells in a nonhuman primate model. Exp Hematol 42:497-504
Deyle, David R; Li, Li B; Ren, Gaoying et al. (2014) The effects of polymorphisms on human gene targeting. Nucleic Acids Res 42:3119-24
Chang, Kai-Hsin; Huang, Andy; Han, Hemei et al. (2013) Transcriptional environment and chromatin architecture interplay dictates globin expression patterns of heterospecific hybrids derived from undifferentiated human embryonic stem cells or from their erythroid progeny. Exp Hematol 41:967-979.e6
van Rensburg, R; Beyer, I; Yao, X-Y et al. (2013) Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 20:201-14
Yannaki, Evangelia; Karponi, Garyfalia; Zervou, Fani et al. (2013) Hematopoietic stem cell mobilization for gene therapy: superior mobilization by the combination of granulocyte-colony stimulating factor plus plerixafor in patients with *-thalassemia major. Hum Gene Ther 24:852-60
Groth, Amy C; Liu, Mingdong; Wang, Hao et al. (2013) Identification and characterization of enhancer-blocking insulators to reduce retroviral vector genotoxicity. PLoS One 8:e76528
Deyle, D R; Khan, I F; Ren, G et al. (2013) Lack of genotoxicity due to foamy virus vector integration in human iPSCs. Gene Ther 20:868-73

Showing the most recent 10 out of 142 publications