The function of Core B is to provide human and immune cell phenotyping for each project that will be critical to the translation of mechanistic findings into the human model. The effects of immune cell variations on atherosclerosis in humans represents a poody understood area of atherogenesis and possible atheroprotection. The goal of the Human Phenotyping and Immune Cell Core (Core B) is to provide the resources necessary for translation of novel immune mechanisms of atherosclerosis that are well defined in murine models into the human model. Specifically, we will provide well-defined phenotypes of atherosclerosis burden and risk in patients with and without type 2 diabetes, genotyping analysis, and phenotypic descriptions of immune cells in humans using flow cytometry. Core B will work with each of the three projects to provide in patients, with and without Type 2 diabetes, well-defined phenotypes of atherosclerosis burden and risk using the Framingham risk Score and carotid intima-media thickness (projects 1-3);serum and plasma measurement of traditional atherosclerotic risk factors (projects 1-3);genotyping of single nucleotide polymorphisms related to atherosclerotic mechanisms (project 3);isolation and FACS analysis of immune cells (projects 1,3);and collection and shipping of serum and plasma for analysis by individual projects (projects 1-3).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL055798-16A1
Application #
8396707
Study Section
Special Emphasis Panel (ZHL1-CSR-A (M1))
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
16
Fiscal Year
2012
Total Cost
$375,435
Indirect Cost
$18,500
Name
La Jolla Institute
Department
Type
DUNS #
603880287
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Prasad, Anand; Clopton, Paul; Ayers, Colby et al. (2017) Relationship of Autoantibodies to MDA-LDL and ApoB-Immune Complexes to Sex, Ethnicity, Subclinical Atherosclerosis, and Cardiovascular Events. Arterioscler Thromb Vasc Biol 37:1213-1221
Miller, Yury I; Shyy, John Y-J (2017) Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab 28:143-152
Torzewski, Michael; Ravandi, Amir; Yeang, Calvin et al. (2017) Lipoprotein(a) Associated Molecules are Prominent Components in Plasma and Valve Leaflets in Calcific Aortic Valve Stenosis. JACC Basic Transl Sci 2:229-240
Kamstrup, Pia R; Hung, Ming-Yow; Witztum, Joseph L et al. (2017) Oxidized Phospholipids and Risk of Calcific Aortic Valve Disease: The Copenhagen General Population Study. Arterioscler Thromb Vasc Biol 37:1570-1578
Ley, Klaus; Gerdes, Norbert; Winkels, Holger (2017) ATVB Distinguished Scientist Award: How Costimulatory and Coinhibitory Pathways Shape Atherosclerosis. Arterioscler Thromb Vasc Biol 37:764-777
Yeang, Calvin; Gordts, Philip L S M; Tsimikas, Sotirios (2017) Novel Lipoprotein(a) Catabolism Pathway via Apolipoprotein(a) Recycling: Adding the Plasminogen Receptor PlgRKT to the List. Circ Res 120:1050-1052
Pechlaner, Raimund; Tsimikas, Sotirios; Yin, Xiaoke et al. (2017) Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III. J Am Coll Cardiol 69:789-800
Lee, Sang-Rok; Prasad, Anand; Choi, Yun-Seok et al. (2017) LPA Gene, Ethnicity, and Cardiovascular Events. Circulation 135:251-263
Nowyhed, Heba N; Chandra, Shilpi; Kiosses, William et al. (2017) ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep 7:40273
Choi, Soo-Ho; Sviridov, Dmitri; Miller, Yury I (2017) Oxidized cholesteryl esters and inflammation. Biochim Biophys Acta 1862:393-397

Showing the most recent 10 out of 206 publications