Core D: Morphology Core The purpose of the Core D (Morphology Core) is to provide state-of-the-art, standard and specialized morphology and histology services to the various projects of this Program Project grant effort. The Core D (Morphology Core) Director: David Gordon, and the Co-director: He Wang will continually meet with the various investigators of our projects to discuss experimental design and to mutually formulate the gross, microscopic and histologic studies to be performed. Standard procedures shall include assistance with tissue harvesting and fixation, further tissue processing/embedding, immunocytochemistry and in situ mRNA hybridization. Specialized procedures shall include performing autopsies on selected new genetically engineered mice to look for: congenital anomalies, evidence of thrombosis and/or hemorrhage, and other pathology which may be characteristic of the specific genetic alteration. We will also assist individual projects in working out the conditions for using specific new immunostaining and in situ hybridization methods (e.g. for newly acquired antibodies or probes), with the appropriate controls, and with other morphology techniques as the need arises (e.g.laser capture microdissection). Finally this Morphology Core will assist investigators in documenting the findings via routine photomicroscopy and selected morphometry.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL057346-15
Application #
8450262
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
15
Fiscal Year
2013
Total Cost
$132,478
Indirect Cost
$54,857
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Ji, Yan; Weng, Zhen; Fish, Philip et al. (2016) Pharmacological Targeting of Plasminogen Activator Inhibitor-1 Decreases Vascular Smooth Muscle Cell Migration and Neointima Formation. Arterioscler Thromb Vasc Biol 36:2167-2175
Khoriaty, Rami; Everett, Lesley; Chase, Jennifer et al. (2016) Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. Sci Rep 6:27802
Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin et al. (2016) SM-TF: A structural database of small molecule-transcription factor complexes. J Comput Chem 37:1559-64
Emmer, Brian T; Ginsburg, David; Desch, Karl C (2016) Von Willebrand Factor and ADAMTS13: Too Much or Too Little of a Good Thing? Arterioscler Thromb Vasc Biol 36:2281-2282
Khoobchandani, Menka; Katti, Kavita; Maxwell, Adam et al. (2016) Laminin Receptor-Avid Nanotherapeutic EGCg-AuNPs as a Potential Alternative Therapeutic Approach to Prevent Restenosis. Int J Mol Sci 17:316
Tomberg, Kärt; Khoriaty, Rami; Westrick, Randal J et al. (2016) Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice. PLoS One 11:e0150852
Fribley, Andrew M; Miller, Justin R; Brownell, Amy L et al. (2015) Celastrol induces unfolded protein response-dependent cell death in head and neck cancer. Exp Cell Res 330:412-22
Wu, Jianbo; Strawn, Tammy L; Luo, Mao et al. (2015) Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-αVβ3 integrin cross talk. Arterioscler Thromb Vasc Biol 35:111-20
Sun, Hongmin (2015) Factor V: an active player in inflammation. Blood 126:2352-3
Kretz, Colin A; Dai, Manhong; Soylemez, Onuralp et al. (2015) Massively parallel enzyme kinetics reveals the substrate recognition landscape of the metalloprotease ADAMTS13. Proc Natl Acad Sci U S A 112:9328-33

Showing the most recent 10 out of 180 publications