Core A (Administrative Core), led by the Program's Principal Investigator, Joe G. N. Garcia, MD, will provide essential administrative and secretarial support and ensure overall direction and organization of the entire Program. In addition, this Core will provide accounting support that will ensure appropriate fiscal and scientific oversight, monitoring and compliance with federal and institutional grant management regulations, the latter through several formal mechanisms. The objectives of the Administrative core are (i) centralization of all administrative actions and financial recording keeping, (ii) to provide statistical and data processing support for the projects (iii) to prepare scientific and financial reports as required by the university and the NHLBI, (iv) to ensure that the PPG research meets the highest standards through periodic review by the internal and external review panels, (v) to facilitate the use of common resources, (vi) to foster exchange of scientific information and ideas and (vi) provide the projects and cores with a review of all expenditures on a monthly basis and deal with University Accounting and Grants offices concerning grant budgets. Core A will coordinate the inter-project, inter-departmental, and inter-institutional collaborative arrangements and evolve new arrangements as deemed necessary for the scientific progress of the Program Project as a whole. Core personnel will orchestrate monthly meetings of the project leaders that will be held to discuss scientific and administrative matters. Core A will organize regular research seminars on Monday mornings which will allow PPG investigators to present their work in progress to other researchers. Coordinated administrative services will ensure optimal purchasing practices, facilitate communications, and promote scientific interaction.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL058064-16
Application #
8214996
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2011-02-01
Project End
2013-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
16
Fiscal Year
2011
Total Cost
$300,642
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Wang, X; Bleher, R; Wang, L et al. (2017) Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep 7:14152
Shekhawat, Gajendra S; Dudek, Steven M; Dravid, Vinayak P (2017) Development of ultrasound bioprobe for biological imaging. Sci Adv 3:e1701176
Camp, Sara M; Chiang, Eddie T; Sun, Chaode et al. (2016) ""Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and ?-Glucuronide-FTY720"". Chem Phys Lipids 194:85-93
de la Vega, Montserrat Rojo; Dodson, Matthew; Gross, Christine et al. (2016) Role of Nrf2 and Autophagy in Acute Lung Injury. Curr Pharmacol Rep 2:91-101
Tao, Shasha; Rojo de la Vega, Montserrat; Quijada, Hector et al. (2016) Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner. Sci Rep 6:18760
Viswanathan, P; Ephstein, Y; Garcia, J G N et al. (2016) Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. Biochem Biophys Res Commun 478:599-605
Fu, Panfeng; Usatyuk, Peter V; Lele, Abhishek et al. (2015) c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury. Am J Physiol Lung Cell Mol Physiol 308:L1025-38
Choi, Sangwook; Camp, Sara M; Dan, Arkaprava et al. (2015) A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing. Am J Physiol Lung Cell Mol Physiol 309:L983-94
Camp, Sara M; Chiang, Eddie T; Sun, Chaode et al. (2015) Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: methoxy-FTY720, fluoro-FTY720, and ?-glucuronide-FTY720. Chem Phys Lipids 191:16-24
Shen, Kui; Ramirez, Benjamin; Mapes, Brandon et al. (2015) Structure-Function Analysis of the Non-Muscle Myosin Light Chain Kinase (nmMLCK) Isoform by NMR Spectroscopy and Molecular Modeling: Influence of MYLK Variants. PLoS One 10:e0130515

Showing the most recent 10 out of 248 publications