The Vector Core at the University of Pennsylvania is an independent and full service laboratory providing reagents and expertise in the area of gene transfer. This facility called "Penn Vector" is directed by Dr. Julie Johnston who manages 8 scientists in the area of AAV, adenoviral and lentiviral vector production. .This program will focus on utilization of Penn vector for the production of AAV vectors that will service Projects I through III. An independent Quality Control Program directed by Dr. Pranay Khare performs a series of assays necessary for release of the vector for in vivo studies. This core will also analyze tissues for presence of vector genomes using TaqMan and PCR technology. Finally, the Vector Core will adapt existing methods of manufacturing and purification to the clinical candidate for a large scale production efficient enough to support large animal studies. The laboratory operates under the general principles of GLP including, documentation (batch record forms), SOPs, QA/QC, training and equipment validation, although it does not represent itself as being fully GLP or GMP.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL059407-15
Application #
8502518
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
15
Fiscal Year
2013
Total Cost
$255,312
Indirect Cost
$98,664
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Liu, Lijun; Nam, Minwoo; Fan, Wei et al. (2014) Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. J Clin Invest 124:768-84
Mikals, Kyle; Nam, Hyun-Joo; Van Vliet, Kim et al. (2014) The structure of AAVrh32.33, a novel gene delivery vector. J Struct Biol 186:308-17
Wang, Dan; Zhong, Li; Nahid, M Abu et al. (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11:345-64
Wang, Dan; Gao, Guangping (2014) State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 18:67-77
Wang, Dan; Gao, Guangping (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18:151-61
Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen et al. (2014) Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR. Hum Gene Ther Methods 25:115-25
Gao, Kai; Li, Mengxin; Zhong, Li et al. (2014) Empty Virions In AAV8 Vector Preparations Reduce Transduction Efficiency And May Cause Total Viral Particle Dose-Limiting Side-Effects. Mol Ther Methods Clin Dev 1:20139
Somanathan, Suryanarayan; Jacobs, Frank; Wang, Qiang et al. (2014) AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res 115:591-9
Kassim, Sadik H; Li, Hui; Bell, Peter et al. (2013) Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum Gene Ther 24:19-26
Gruntman, Alisha M; Bish, Lawrence T; Mueller, Christian et al. (2013) Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit 14D.3

Showing the most recent 10 out of 126 publications