Myosin-binding protein C (MyBP-C) is a component of the thick filaments of vertebrate skeletal and cardiac muscle. Phosphorylation of the cardiac isoform, cMyBP-C, plays a key role in modulating cardiac contractility in response to p-adrenergic stimulation. Mutations in cMyBP-C have been shown to be a prime cause of the cardiac disease, familial hypertrophic cardiomyopathy. Our long term goal is to understand the structural basis of cMyBP-C function. In this project electron microscopy and image processing will be used to elucidate the structure of the molecule, its organization in the sarcomere, its interaction with thin filaments, and the changes that occur when it is phosphorylated. Experiments will make use of expressed mutant and wild type cMyBP-C molecules and N-terminal fragments (produced in Core C), native thick filaments from wild type and transgenic hearts (Core C), and intact muscle.
Three specific aims will be addressed. (1) How is cMyBPC organized at the molecular, thick filament and sarcomeric level? We will determine whether the MyBP-C molecule has specific structural features required to carry out its function, whether it wraps around, extends along, or projects away from the filament surface to interact with neighboring filaments, and how it influences myosin head organization. (2) What is the structural basis of cMyBP-C's modulation of actin-myosin interaction? We will determine whether cMyBP-C competes with myosin heads for actin binding, and whether it influences the position of tropomyosin on thin fliaments at high or low Ca[2+] levels. (3) What are the structural effects of cMyBP-C phosphorylation? We will determine whether phosphorylation alters cMyBP-C flexibility, thick filament structure (e.g. head conformation), and its interaction with thin filaments. These goals will be achieved using negative stain, cryo-EM, antibody labeling and muscle sectioning approaches, combined with single particle, helical and tomographic 3D reconstrucfion techniques. Results will be correlated with, and structurally underpin, parallel single molecule biophysics experiments (Project 2) and whole heart functional data (Project 3, Core B). The project will provide new insights into the structural mechanisms by which cMyBP-C funcfions in the heart.

Public Health Relevance

Pumping of the heart is generated by interactions between the thin and thick protein filaments that make up cardiac muscle. Myosin-binding protein C (MyBP-C) is a thick filament component that regulates cardiac contraction in response to stimulation, and defects in MyBP-C are a cause of cardiac disease. In this project we will use electron microscopy to reveal the molecular organization of MyBP-C in cardiac muscle, providing insights into the structural mechanisms by which it functions in the normal beating heart.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL059408-14
Application #
8432069
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
14
Fiscal Year
2013
Total Cost
$276,623
Indirect Cost
$45,235
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Lee, Kyounghwan; Harris, Samantha P; Sadayappan, Sakthivel et al. (2015) Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM. J Mol Biol 427:274-86
Sandri, Marco; Robbins, Jeffrey (2014) Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol 71:3-10
Rainer, Peter P; Hao, Scarlett; Vanhoutte, Davy et al. (2014) Cardiomyocyte-specific transforming growth factor ? suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ Res 114:1246-57
Gupta, Manish K; Robbins, Jeffrey (2014) Post-translational control of cardiac hemodynamics through myosin binding protein C. Pflugers Arch 466:231-6
Seo, Kinya; Rainer, Peter P; Shalkey Hahn, Virginia et al. (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci U S A 111:1551-6
Mun, Ji Young; Previs, Michael J; Yu, Hope Y et al. (2014) Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism. Proc Natl Acad Sci U S A 111:2170-5
Yang, Shixin; Barbu-Tudoran, Lucian; Orzechowski, Marek et al. (2014) Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state. Biophys J 106:855-64
Craig, Roger; Lee, Kyoung Hwan; Mun, Ji Young et al. (2014) Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Arch 466:425-31
Tanner, Bertrand C W; Wang, Yuan; Robbins, Jeffrey et al. (2014) Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C. J Muscle Res Cell Motil 35:267-78
Wang, Xuejun; Robbins, Jeffrey (2014) Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 71:16-24

Showing the most recent 10 out of 128 publications