In Project 4, we will test the hypotheses that (i) Nox2-dependent oxidant signaling activates Src kinasedependent ICAM-1-phosphorylation and thereby the recruitment of PMNs in the pulmonary circulation, and that (ii) Src phosphorylation of ICAM-1 in turn protracts Src activation and phosphorylation of caveolin-1 and dynamin-2, thereby triggering caveolae-mediated transcytosis of albumin and endothelial hyper-permeability. These studies will address the following Specific Aims: (1) role of PI3-kinase, PKC zeta, Nox2, and Src signaling, and of Akt phosphorylation of filamin A in the mechanism of ICAM-1 phosphorylation, clustering, and rapid increase in ICAM-1 binding affinity in lung microvascular endothelial cells and PMN uptake in lungs;(2) role of phospho-ICAM-1 in recruitment of SHP2 and protracting Src activation and thereby caveolin-1 and dynamin-2 activation, and thus stimulating caveolae-mediated transcytosis and hyper-permeability of albumin. Project 4 will delineate the signaling mechanisms mediating the post-translafional modification of ICAM-1 in pulmonary microvessel endothelial cells using imaging, cell biology, biochemical, and physiological approaches. We will thereby establish how endothelial cell ICAM-1 shifts to a high-affinity state and promotes PMN adhesion and sequestration and also induces caveolae-mediated hyper-permeability via the transcytosis of albumin. These studies it is hoped will lead to a new understanding of the early PMN-mediated lung inflammatory response and its coupling to lung vascular hyper-permeability. Identification of the key signaling hubs of ICAM-1-mediated endothelial adhesivity and activation of the caveolae-mediated albumin transport pathway is likely to provide novel therapeutic targets directed against infiammatory lung injury.

Public Health Relevance

We will elucidate the role of Src-activated signaling mechanism regulating endothelial adhesivity and thereby permeability of lung microvessels. The proposed studies will for the first time establish the potentially important relationship between Src-activation of ICAM-1, neutrophil adhesion, and activation of the caveolar permeability machinery. Project 4 studies will thus define a novel pathogenic mechanism of ALI/ARDS.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
United States
Zip Code
Jiang, Chunling; Liu, Zheng; Hu, Rong et al. (2017) Inactivation of Rab11a GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. J Immunol 198:1660-1672
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Oliveira, Suellen D S; Castellon, Maricela; Chen, Jiwang et al. (2017) Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-?-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 312:L760-L771
Potje, Simone R; Chen, Zhenlong; Oliveira, Suellen D'Arc S et al. (2017) Nitric oxide donor [Ru(terpy)(bdq)NO]3+ induces uncoupling and phosphorylation of endothelial nitric oxide synthase promoting oxidant production. Free Radic Biol Med 112:587-596
Gong, Haixia; Liu, Menglin; Klomp, Jeff et al. (2017) Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 7:42127
Gu, Wei; Yao, Lun; Li, Lexing et al. (2017) ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 8:111882-111901
Tsang, Kit Man; Hyun, James S; Cheng, Kwong Tai et al. (2017) Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1?. Stem Cell Reports 9:796-806
Park, Thomas J; Reznick, Jane; Peterson, Bethany L et al. (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307-311
Yazbeck, Pascal; Tauseef, Mohammad; Kruse, Kevin et al. (2017) STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry. Sci Rep 7:42758
Marsboom, Glenn; Chen, Zhenlong; Yuan, Yang et al. (2017) Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell 28:1177-1185

Showing the most recent 10 out of 195 publications