The overall goals of Core D are to provide (i) fiuorescence, confocal, and electron microscopy support, (ii) image analysis, and (iii) physiological support for lung perfusion experiments proposed in all projects. Centralization of the imaging and physiological support within a single core refiects the emphasis that P.l.s have placed on imaging and physiological studies in lung models. Core D is essential in order to fulfill the objectives of all projects. In addition to the research support. Core D personnel will also provide training for project participants in these methodologies. Core D will provide expertise, resources, and equipment for performing lung studies in the knockout mouse models and other mouse models in which proteins of interest are expressed through gene delivery via liposomes. Core D will provide expertise for the transfection of cDNAs in mouse lung microvessels using cationic liposomes. The physiological support component will provide standardized methods for quantification of lung vascular permeability in normal and genetically modified mice. This will include measurement of pulmonary capillary filtration coefficient and vessel wall albumin permeability surface-area product. The methods to be used have been developed specifically for the mouse lung. In addition, lung vascular albumin permeability and the routes of albumin transport will be assessed by electron microscopy and morphometric analysis using described methods. In terms of the imaging component. Core D will provide resources and expertise for (i) live cell and fixed specimen fluorescence, confocal, FRET (fluorescence resonance energy transfer), and TIRF (total internal reflective fluorescence) microscopy and (ii) transmission electron microscopy. Also, Core D will provide assessment of expression of transfected and liposome-delivered proteins by fluorescence and confocal microscopy of endothelial monolayers and whole mount lung sections as described.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-13
Application #
8434037
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
13
Fiscal Year
2013
Total Cost
$224,608
Indirect Cost
$81,408
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Di, Anke; Mehta, Dolly; Malik, Asrar B (2016) ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium 60:163-71
Tauseef, Mohammad; Farazuddin, Mohammad; Sukriti, Sukriti et al. (2016) Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB J 30:102-10
Gong, Haixia; An, Shejuan; Sassmann, Antonia et al. (2016) PAR1 Scaffolds TGFβRII to Downregulate TGF-β Signaling and Activate ESC Differentiation to Endothelial Cells. Stem Cell Reports 7:1050-1058
Rajput, Charu; Tauseef, Mohammad; Farazuddin, Mohammad et al. (2016) MicroRNA-150 Suppression of Angiopoetin-2 Generation and Signaling Is Crucial for Resolving Vascular Injury. Arterioscler Thromb Vasc Biol 36:380-8
Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani et al. (2016) Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase. Adv Biol Regul :
Zimnicka, Adriana M; Husain, Yawer S; Shajahan, Ayesha N et al. (2016) Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 27:2090-106
Jiang, Ying; Sverdlov, Maria S; Toth, Peter T et al. (2016) Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. J Biol Chem 291:20729-38
Liu, Yuru; Kumar, Varsha Suresh; Zhang, Wei et al. (2015) Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 53:113-24
Geyer, Melissa; Huang, Fei; Sun, Ying et al. (2015) Microtubule-Associated Protein EB3 Regulates IP3 Receptor Clustering and Ca(2+) Signaling in Endothelial Cells. Cell Rep 12:79-89
Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang et al. (2015) Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling. Cell Signal 27:90-103

Showing the most recent 10 out of 169 publications