The major source of "high-output" nitric oxide (NO) during inflammation is inducible NO synthase (iNOS). Although iNOS is a transcriptionally-regulated generator of high NO, we have discovered a novel mode of post- translational, G protein coupled receptor (GPCR)-mediated activation of iNOS via ERK-dependent phosphorylation in endothelial cells. Post-translational activation of iNOS results in a further 3- to 5-fold increase in NO concentration over its already high basal amount. In Project 2, we will address the mechanisms by which iNOS phosphorylation leads to high output NO production and how this influences the lung endothelial barrier. We will test the hypotheses that (i) activation of the kinin GPCR, BI, induces ?-arrestin2 scaffolding of iNOS and ERK, which in turn phosphorylates and activates iNOS due to enhanced dimerization and isomerization by the prolyl isomerase Pin1, (ii) S-nitrosylation of ?-arrestin2 dissociates it from iNOS, resulting in dephosphorylation and inactivation ,and (iii) post-translationally activated iNOS-derived NO causes increased lung vascular permeability in the context of NADPH oxidase (NOX2) activation and peroxynitrite generation resulting in endocytosis of VE-cadherin and inactivation of p190RhoGAP. The signaling pathways mediating receptor-dependent post-translational activation of iNOS in pulmonary endothelial cells and its effects on pulmonary vascular permeability will be investigated using imaging, cell biology, biochemical, and physiological approaches. We will thereby establish the role of key signaling molecules ?-arrestin2 and Pin1 in mediating INOS activation and functions of ?-arrestin2, p190RhoGAP and VE-cadherin in mediating disruption of lung endothelial barrier function. The proposed studies we hope will provide novel therapeutic strategies to inhibit detrimental consequences of high concentrations of NO in inflammatory lung injury based on the deeper understanding of signaling pathways by which iNOS is activated secondary to its expression in the endothelium.

Public Health Relevance

Nitric oxide is an important signaling molecule made by blood vessels and during infection or inflammation, high levels of this molecule can be generated to cause damage to the lung. The proposed studies will investigate mechanisms by which vascular endothelial cells generate high levels of nitric oxide and how this affects the permeability or leakiness of lung vessels. We hope our findings will provide novel therapeutic strategies to inhibit detrimental consequences of high nitric oxide in inflammatory lung injury.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
United States
Zip Code
Liu, Yuru; Kumar, Varsha Suresh; Zhang, Wei et al. (2015) Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 53:113-24
Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R et al. (2015) Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 308:L208-20
Piegeler, Tobias; Dull, Randal O; Hu, Guochang et al. (2014) Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. BMC Anesthesiol 14:57
Mao, Mao; Varadarajan, Sudhahar; Fukai, Tohru et al. (2014) Nitroglycerin tolerance in caveolin-1 deficient mice. PLoS One 9:e104101
Chernaya, Olga; Shinin, Vasily; Liu, Yuru et al. (2014) Behavioral heterogeneity of adult mouse lung epithelial progenitor cells. Stem Cells Dev 23:2744-57
Thangavel, Jayakumar; Malik, Asrar B; Elias, Harold K et al. (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237-49
Tobin, Matthew K; Bonds, Jacqueline A; Minshall, Richard D et al. (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34:1573-84
Yang, Kai-Chien; Rutledge, Cody A; Mao, Mao et al. (2014) Caveolin-1 modulates cardiac gap junction homeostasis and arrhythmogenecity by regulating cSrc tyrosine kinase. Circ Arrhythm Electrophysiol 7:701-10
Mehta, Dolly; Ravindran, Krishnan; Kuebler, Wolfgang M (2014) Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 307:L924-35
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem et al. (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126-67

Showing the most recent 10 out of 137 publications