Core B is a central resource for primary endothelial cell cultures and adenoviruses available for each of the four projects. This core facility will provide services for the following: 1) characterization and culture of primary human lung microvascular endothelial cells;2) isolation, characterization and culture of primary lung microvascular endothelial cells of mouse origin including those of different genetic mouse models and 3) amplification and purification of recombinant adenoviruses for the experiments proposed in the Projects as outiined in the Core description below. Human and mouse lung endothelial cell cultures are pivotal for the accomplishment of studies proposed in all four Projects. Specifically, Core B is critical for providing endothelial cells isolated from different genetic mouse models;e.g.,fiklGPF*'"transgenic and Cav-1, eNOS, AKT-1, Src, Nox2 and PAR-1 knockout mice for Project 1;eNOS, iNOS, NADPH oxidase {p47phox and Nox2) and PAR-1 knockout mice for Project 2;Trpc6, TRPC1 and TRPC4, Src, PKC?, PAR-1 and EC-MLCK knockout mice for Project 3 and pi 10?, Src, Aktl, Cav-1, ICAM-1 mice for Project 4. In addition. Core B will provide amplification and purification of recombinant adenoviruses for all four Projects. The activities of this Core are essential for the success of the Program and successful completion of all aims in the four projects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
United States
Zip Code
Liu, Yuru; Kumar, Varsha Suresh; Zhang, Wei et al. (2015) Activation of type II cells into regenerative stem cell antigen-1(+) cells during alveolar repair. Am J Respir Cell Mol Biol 53:113-24
Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R et al. (2015) Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 308:L208-20
Piegeler, Tobias; Dull, Randal O; Hu, Guochang et al. (2014) Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. BMC Anesthesiol 14:57
Mao, Mao; Varadarajan, Sudhahar; Fukai, Tohru et al. (2014) Nitroglycerin tolerance in caveolin-1 deficient mice. PLoS One 9:e104101
Chernaya, Olga; Shinin, Vasily; Liu, Yuru et al. (2014) Behavioral heterogeneity of adult mouse lung epithelial progenitor cells. Stem Cells Dev 23:2744-57
Thangavel, Jayakumar; Malik, Asrar B; Elias, Harold K et al. (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237-49
Tobin, Matthew K; Bonds, Jacqueline A; Minshall, Richard D et al. (2014) Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab 34:1573-84
Yang, Kai-Chien; Rutledge, Cody A; Mao, Mao et al. (2014) Caveolin-1 modulates cardiac gap junction homeostasis and arrhythmogenecity by regulating cSrc tyrosine kinase. Circ Arrhythm Electrophysiol 7:701-10
Mehta, Dolly; Ravindran, Krishnan; Kuebler, Wolfgang M (2014) Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 307:L924-35
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem et al. (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126-67

Showing the most recent 10 out of 137 publications