The focus of the Program Project is to investigate the molecular and signaling mechanisms of re-sealing of adherens junctions (AJs) and restoration of lung endothelial barrier and homeostasis post-inflammatory lung injury. These processes will be defined by means of dynamic changes in the distribution of proteins comprising AJs including signaling molecules, assessment of their dynamics and activity at the level of lamellipodia protrusions and AJs. Core B will provide technical support for all Projects in addressing the role of key signaling molecules involved in lung endothelial barrier restoration as proposed including the vascular endothelial protein tyrosine phosphatase (VE-PTP) in Project 1, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFK- FB3) in Project 2, sphingosine-1-phosphate receptor-1 (S1PR1) in Project 3, and phospholipase D2 (PLD2) in Project 4. This will involve advanced live-cell imaging and state-of-art image analysis to investigate (i) distribution and dynamics of adhesion (such as VE-cadherin) and signaling proteins at AJs and in lamellipodia; (ii) key role of PFK-FB3 and PLD2 in lamellipodia formation and dynamics and the re-sealing of AJs; (iii) spatiotemporal activity of small RhoA GTPases Rac1, Cdc42 and RhoA; (iv) utilization of photoactivated probes to control the activity of signaling molecules at specific loci such as AJs; (v) mechanical acto-myosin tension across VE-cadherin adhesion using biosensors. These methods available in Core B will provide the advanced imaging capabilities needed to address the questions posed. In addition, Core B will provide high-quality uniformly cultured human and mouse lung microvessel endothelial cells and isolation of lung endothelial cells from genetic mouse models as needed. The Imaging and Cell Culture Core B will be essential for meeting the scientific objectives of each Project and the Program as a whole.

Public Health Relevance

The objectives of Core B are to provide the Principal Investigators in the Program with technical support in microscopic analyses of protein dynamics and activities within specific intracellular domains such as membranous protrusion and cell-cell adhesion in order to understand how endothelial barrier property is restored after inflammatory injury. This is important because understanding the intrinsic key elements of the recovery process will lay a background for development of novel therapeutic targets for treatment of lung inflammation and injury. Core B will offer state-of-the-art live-cell imaging techniques and high-quality uniformly cultured human and mouse lung microvessel endothelial cells that are essential for meeting the scientific objectives of the Program.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL060678-16A1
Application #
9151427
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Xiao, Lei
Project Start
Project End
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
16
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Gong, Haixia; Liu, Menglin; Klomp, Jeff et al. (2017) Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 7:42127
Komarova, Yulia A; Kruse, Kevin; Mehta, Dolly et al. (2017) Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 120:179-206
Komarova, Yulia; Kruse, Kevin J; Mehta, Dolly et al. (2017) Response by Komarova et al to Letter Regarding Article, ""Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability"". Circ Res 120:e28
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87

Showing the most recent 10 out of 200 publications