Core C, the Mouse Breeding and Microsurgery and Procedure Core will continue to serve all three Projects over all five years of the Program. There are two major functions of Core C: (1) The Mouse Breeding & Management Unit will continue to provide transgenic and null mice bred Into specific genetic backgrounds to each of the three projects of the Program. This Unit will provide sen/ices to mate and genotype the animals required for Projects 1-2-3. (2) The newly-formed Mouse Microsurgery and Procedure Unit has grown out of the expansion of the Program's studies. The goal of this Unit is to standardize all microsurgery procedures and procedures carried out by the Projects. This Unit will be responsible for lethal irradiation and bone marrow transplantation (Projects 2), femoral artery ligation for induction of hind limb ischemia (Project 2), assessment of reverse cholesterol transport (Project 1) and myocardial infarction (Project 3).

Public Health Relevance

Atherosclerosis, peripheral arterial disease and myocardial infarction and its consequences are highlyprevalent diseases. In subjects with diabetes, the incidence and severity of these disorders is increased. This application focuses on the Receptor for Advanced Glycation Endproducts (RAGE) and its biology in accelerated cardiovascular disease, particulariy in diabetes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060901-12
Application #
8378287
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
2017-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
12
Fiscal Year
2013
Total Cost
$318,174
Indirect Cost
$130,079
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Schmidt, Ann Marie (2018) Highlighting Diabetes Mellitus: The Epidemic Continues. Arterioscler Thromb Vasc Biol 38:e1-e8
Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran et al. (2018) Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics. J Transl Sci 4:1-9
Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran et al. (2018) Training scientists as future industry leaders: teaching translational science from an industry executive's perspective. J Transl Sci 4:
Schmidt, Ann Marie (2017) 2016ATVBPlenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis an Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage. Arterioscler Thromb Vasc Biol 37:613-621
López-Díez, Raquel; Shen, Xiaoping; Daffu, Gurdip et al. (2017) Ager Deletion Enhances Ischemic Muscle Inflammation, Angiogenesis, and Blood Flow Recovery in Diabetic Mice. Arterioscler Thromb Vasc Biol 37:1536-1547
Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie (2017) Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Rev Proteomics 14:147-156
Senatus, Laura M; Schmidt, Ann Marie (2017) The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet 8:187
López-Díez, Raquel; Shekhtman, Alexander; Ramasamy, Ravichandran et al. (2016) Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta 1862:2244-2252
Thiagarajan, Devi; Vedantham, Srinivasan; Ananthakrishnan, Radha et al. (2016) Mechanisms of transcription factor acetylation and consequences in hearts. Biochim Biophys Acta 1862:2221-2231
Manigrasso, Michaele B; Pan, Jinhong; Rai, Vivek et al. (2016) Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Sci Rep 6:22450

Showing the most recent 10 out of 78 publications