1. Surgical Animal Models for Studying Cardiac Hypertrophy and Failure The Director of the Animal Physiology Core has developed a number of surgical models that induce cardiac hypertrophy and failure in the rodent. In Projects 1,2 and 3 (Solaro, Russell, Lewandowski), transverse thoracic aortic banding will be used to examine the effect of superimposing a systolic pressure overload on mice that overexpress transgenes of sarcomeric and intracellular signaling proteins in the heart. Project 2 also includes a model of arteriovenous insufficiency in mice to induce a volume overload on the left ventricle. Guinea pigs (DeTombe, Project 4) will be subjected to pressure and volume overload induced by transverse thoracic aortic coarctation or aortic insufficiency (aortic valve leaflet damage). These studies will examine the effect of ventricular remodeling and failure on isolated muscle function and the role that phosphorylation of sarcomeric proteins play in cardiac dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL062426-13
Application #
8380021
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
13
Fiscal Year
2012
Total Cost
$405,287
Indirect Cost
$95,228
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Abraham, Dennis M; Davis 3rd, Robert T; Warren, Chad M et al. (2016) β-Arrestin mediates the Frank-Starling mechanism of cardiac contractility. Proc Natl Acad Sci U S A 113:14426-14431
de Tombe, Pieter P; ter Keurs, Henk E D J (2016) Cardiac muscle mechanics: Sarcomere length matters. J Mol Cell Cardiol 91:148-50
Lin, Ying-Hsi; Warren, Chad M; Li, Jieli et al. (2016) Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ. Cell Signal 28:1015-24
Dvornikov, Alexey V; Smolin, Nikolai; Zhang, Mengjie et al. (2016) Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres. J Biol Chem 291:21817-21828
Li, King-Lun; Ghashghaee, Nazanin Bohlooli; Solaro, R John et al. (2016) Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Arch Biochem Biophys 601:69-79
Rosas, Paola C; Liu, Yang; Abdalla, Mohamed I et al. (2015) Phosphorylation of cardiac Myosin-binding protein-C is a critical mediator of diastolic function. Circ Heart Fail 8:582-94
Abrol, Neha; de Tombe, Pieter P; Robia, Seth L (2015) Acute inotropic and lusitropic effects of cardiomyopathic R9C mutation of phospholamban. J Biol Chem 290:7130-40
Davis 3rd, Robert T; Simon, Jillian N; Utter, Megan et al. (2015) Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res 108:335-47
Utter, Megan S; Ryba, David M; Li, Betty H et al. (2015) Omecamtiv Mecarbil, a Cardiac Myosin Activator, Increases Ca2+ Sensitivity in Myofilaments With a Dilated Cardiomyopathy Mutant Tropomyosin E54K. J Cardiovasc Pharmacol 66:347-53
Warren, Chad M; Karam, Chehade N; Wolska, Beata M et al. (2015) Green Tea Catechin Normalizes the Enhanced Ca2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy-Associated Mutation in Human Cardiac Troponin I (K206I). Circ Cardiovasc Genet 8:765-73

Showing the most recent 10 out of 256 publications