1. Surgical Animal Models for Studying Cardiac Hypertrophy and Failure The Director of the Animal Physiology Core has developed a number of surgical models that induce cardiac hypertrophy and failure in the rodent. In Projects 1,2 and 3 (Solaro, Russell, Lewandowski), transverse thoracic aortic banding will be used to examine the effect of superimposing a systolic pressure overload on mice that overexpress transgenes of sarcomeric and intracellular signaling proteins in the heart. Project 2 also includes a model of arteriovenous insufficiency in mice to induce a volume overload on the left ventricle. Guinea pigs (DeTombe, Project 4) will be subjected to pressure and volume overload induced by transverse thoracic aortic coarctation or aortic insufficiency (aortic valve leaflet damage). These studies will examine the effect of ventricular remodeling and failure on isolated muscle function and the role that phosphorylation of sarcomeric proteins play in cardiac dysfunction.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL062426-14
Application #
8467014
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
14
Fiscal Year
2013
Total Cost
$452,644
Indirect Cost
$106,355
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Zak, Taylor J; Koshman, Yevgenia E; Samarel, Allen M et al. (2017) Regulation of Focal Adhesion Kinase through a Direct Interaction with an Endogenous Inhibitor. Biochemistry 56:4722-4731
Ryba, David M; Li, Jieli; Cowan, Conrad L et al. (2017) Long-Term Biased ?-Arrestin Signaling Improves Cardiac Structure and Function in Dilated Cardiomyopathy. Circulation 135:1056-1070
Ait-Mou, Younss; Zhang, Mengjie; Martin, Jody L et al. (2017) Impact of titin strain on the cardiac slow force response. Prog Biophys Mol Biol 130:281-287
Karam, Chehade N; Warren, Chad M; Henze, Marcus et al. (2017) Peroxisome proliferator-activated receptor-? expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy. Am J Physiol Heart Circ Physiol 312:H681-H690
Li, King-Lun; Ghashghaee, Nazanin Bohlooli; Solaro, R John et al. (2016) Sarcomere length dependent effects on the interaction between cTnC and cTnI in skinned papillary muscle strips. Arch Biochem Biophys 601:69-79
de Tombe, Pieter P; ter Keurs, Henk E D J (2016) Cardiac muscle mechanics: Sarcomere length matters. J Mol Cell Cardiol 91:148-50
Broughton, K M; Li, J; Sarmah, E et al. (2016) A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol 311:H107-17
Paudyal, Anju; Dewan, Sukriti; Ikie, Cindy et al. (2016) Nuclear accumulation of myocyte muscle LIM protein is regulated by heme oxygenase 1 and correlates with cardiac function in the transition to failure. J Physiol 594:3287-305
Siddiqui, Jalal K; Tikunova, Svetlana B; Walton, Shane D et al. (2016) Myofilament Calcium Sensitivity: Consequences of the Effective Concentration of Troponin I. Front Physiol 7:632
Abraham, Dennis M; Davis 3rd, Robert T; Warren, Chad M et al. (2016) ?-Arrestin mediates the Frank-Starling mechanism of cardiac contractility. Proc Natl Acad Sci U S A 113:14426-14431

Showing the most recent 10 out of 274 publications