Our long term objective Project 1 is to understand how signals at the level of the cardiac sarcomere serve to coordinate energy supply and energy consumption.
Our aims test the hypothesis that modifications at the level of the sarcomeric proteins serve as significant sites of signal convergence in the progression to heart failure. Our preliminary data indicate a complex coupling, which involves promotion of signaling pathways induced by altered sarcomeric function and that coordinately control energy supply and energy consumption through reciprocol post-translational modifications of sarcomeric proteins. The experiments include investigation of novel findings including: i) differential activation of AMP activated kinase (AMPK) in aerobic conditions in hearts expressing mutant troponin I (cTnl) linked to familial hypertrophic cardiomyopathy (FHC), ii) phosphorylation of cTnl by AMPK;iii) identification of novel cTnl sites of phosphorylation associated with PKCe activation and dilated cardiomyopathy, iii) data predicting metabolically driven sphingolipid signaling to the sarcomeres, and iv) evidence for functionally significant cTnl intra-molecular interactions The specific aims are:
Aim #1. To compare the role of AMPK (AMP activated protein kinase) as a signaling mechanism coordinating energy supply and energy consumption in normal hearts and hearts stressed by expression of sarcomeric proteins inducing increases in Ca-sensitivity and FHC.
Aim #2. To determine the temporal association of the cardiac phenotype of mice expressing PKCe and demonstrating dilated cardiomyopathy with sarcomeric phosphorylation and whether the phenotype is altered by expression of a non-phosphorylatable mutant Tnl lacking the unique N-terminus.
Aim #3. To determine the functional significance of interactions of regions of cTnl with itself and with other thin filament protein sites, potentially significant in coordinating energy demand and supply and modified by AMP kinase (AMPK), protein kinase D (PKD), and PKCe. Approaches to the aims includes studies at the level of the in situ beating heart, isolated myocytes, and skinned fibers with focus on dynamics and evaluation of myofilament Ca-sensitivity and the sarcomere sub-proteome. This project interacts closely with and complements the aims of the other three projects. All three cores strongly support this project. Data generated by the experiments proposed will open a new avenue of research linking metabolic signaling with reciprocal signaling to the sarcomeres, and provide molecular mechanisms of significance in the development of novel diagnostic and therapeutic strategies important in heart failure.

Public Health Relevance

Familial and acquired heart failure are among the most prevalent disorders of the heart and responsible for the majority of hospital admissions in the USA. Studies proposed here offer the potential for novel diagnostic procedures early in the progression of the disorders, and targets for novel therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL062426-15
Application #
8629548
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
15
Fiscal Year
2014
Total Cost
$378,957
Indirect Cost
$100,547
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Broughton, Kathleen M; Russell, Brenda (2015) Cardiomyocyte subdomain contractility arising from microenvironmental stiffness and topography. Biomech Model Mechanobiol 14:589-602
Carley, Andrew N; Taglieri, Domenico M; Bi, Jian et al. (2015) Metabolic efficiency promotes protection from pressure overload in hearts expressing slow skeletal troponin I. Circ Heart Fail 8:119-27
Simon, Jillian N; Chowdhury, Shamim A K; Warren, Chad M et al. (2014) Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol 109:445
Kirk, Jonathan A; Holewinski, Ronald J; Kooij, Viola et al. (2014) Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3*. J Clin Invest 124:129-38
van der Velden, Jolanda; de Tombe, Pieter P (2014) Heart failure: a special issue. Pflugers Arch 466:1023
Alegre-Cebollada, Jorge; Kosuri, Pallav; Giganti, David et al. (2014) S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 156:1235-46
Samarel, Allen M (2014) Focal adhesion signaling in heart failure. Pflugers Arch 466:1101-11
Bovo, Elisa; de Tombe, Pieter P; Zima, Aleksey V (2014) The role of dyadic organization in regulation of sarcoplasmic reticulum Ca(2+) handling during rest in rabbit ventricular myocytes. Biophys J 106:1902-9
Koshman, Yevgeniya E; Chu, Miensheng; Kim, Taehoon et al. (2014) Cardiomyocyte-specific expression of CRNK, the C-terminal domain of PYK2, maintains ventricular function and slows ventricular remodeling in a mouse model of dilated cardiomyopathy. J Mol Cell Cardiol 72:281-91
Wang, Rui; Wang, Yanwen; Lin, Wee K et al. (2014) Inhibition of angiotensin II-induced cardiac hypertrophy and associated ventricular arrhythmias by a p21 activated kinase 1 bioactive peptide. PLoS One 9:e101974

Showing the most recent 10 out of 214 publications