This is the second competitive renewal application for a Program Project Grant (PPG) entitled Gene Therapy for Hemophilia. The PPG consists of 3 projects and 3 cores. All three projects are continued from the previous PPG. Project 1, directed by Dr. Valder Arruda, will take advantage of a novel Factor (F.) IX variant (F.IX Padua, R338L) that has 10-fold the activity of wild type F.IX. Dr. Arruda will study F.IX Padua's efficacy and potential side-effects in the canine hemophilia 8 models as well as study the molecular basis for F.IX Padua's increased specific activity. Project 2, directed by Dr. Katherine High, will examine the safety and efficacy of continuous expression of Factor VIla after intravascular delivery to skeletal muscle of an AAVFVIIa vector in hemophilic dogs;she will also develop an inducible Vila vector that can be regulated by doxycycline. Project 3, directed by Dr. l /lortimer Poncz, will continue his successful work of the previous funding period to understand the details of thrombus development by platelet-delivered F.VIII and to develop strategies to avoid observed clot instability while retaining platelet F.VIII activity in the presence of inhibitors in both hemophilia A mice and dogs. These 3 projects will be supported by three cores: Core A, the Administrative Core, will support and co-ordinate scientific interactions among the group. Core B, the Vector Core, will provide research grade AAV and lentiviral vectors for the investigators. Finally, Core C, the Large Animal Models Core at UNC-Chapel Hill, will provide access to hemophilic dogs and will provide expertise in coagulation testing and in vivo clotting models in these animals. This PPG presents three highly innovative projects to advance the care of patients with inherited bleeding disorders, including hemophilia A, hemophilia B, and patients with inhibitors to F.VIII or F.IX. The three projects investigate therapeutic strategies that utilize skeletal muscle or hematopoietic cells as targets for gene transfer, and thus are feasible for clinical translation even for those with liver disease due to viral hepatitis, which includes a large fraction of adults with severe hemophilia. The projects are highly interactive, and all three take full advantage of the proposed cores.

Public Health Relevance

Hemophilia A and B account for most of the inherited bleeding disorders in the United States of America, affecting 1 in every 5,000 males. Present treatments replacing the missing coagulation factors are effective, but with significant limitations. This Program Project will pursue animal studies of a number of complementary, innovative gene therapy approaches for the treatment of these bleeding disorders that may provide better care and that may also serve as new approaches for the care of other inherited disorders.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Philadelphia
United States
Zip Code
Sauna, Zuben E; Lozier, Jay N; Kasper, Carol K et al. (2015) The intron-22-inverted F8 locus permits factor VIII synthesis: explanation for low inhibitor risk and a role for pharmacogenomics. Blood 125:223-8
Sullivan, Spencer K; Mills, Jason A; Koukouritaki, Sevasti B et al. (2014) High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood 123:753-7
Sherman, Alexandra; Schlachterman, Alexander; Cooper, Mario et al. (2014) Portal vein delivery of viral vectors for gene therapy for hemophilia. Methods Mol Biol 1114:413-26
Yazicioglu, Mustafa N; Monaldini, Luca; Chu, Kirk et al. (2013) Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2. J Biol Chem 288:25908-14
Callejas, David; Mann, Christopher J; Ayuso, Eduard et al. (2013) Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes 62:1718-29
Siner, Joshua I; Iacobelli, Nicholas P; Sabatino, Denise E et al. (2013) Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood 121:4396-403
Mingozzi, Federico; High, Katherine A (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23-36
Anguela, Xavier M; Sharma, Rajiv; Doyon, Yannick et al. (2013) Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122:3283-7
Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta et al. (2012) Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 119:3038-41
Mingozzi, Federico; High, Katherine A (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341-55

Showing the most recent 10 out of 39 publications