This is the second competitive renewal application for a Program Project Grant (PPG) entitled Gene Therapy for Hemophilia. The PPG consists of 3 projects and 3 cores. All three projects are continued from the previous PPG. Project 1, directed by Dr. Valder Arruda, will take advantage of a novel Factor (F.) IX variant (F.IX Padua, R338L) that has 10-fold the activity of wild type F.IX. Dr. Arruda will study F.IX Padua's efficacy and potential side-effects in the canine hemophilia 8 models as well as study the molecular basis for F.IX Padua's increased specific activity. Project 2, directed by Dr. Katherine High, will examine the safety and efficacy of continuous expression of Factor VIla after intravascular delivery to skeletal muscle of an AAVFVIIa vector in hemophilic dogs;she will also develop an inducible Vila vector that can be regulated by doxycycline. Project 3, directed by Dr. l /lortimer Poncz, will continue his successful work of the previous funding period to understand the details of thrombus development by platelet-delivered F.VIII and to develop strategies to avoid observed clot instability while retaining platelet F.VIII activity in the presence of inhibitors in both hemophilia A mice and dogs. These 3 projects will be supported by three cores: Core A, the Administrative Core, will support and co-ordinate scientific interactions among the group. Core B, the Vector Core, will provide research grade AAV and lentiviral vectors for the investigators. Finally, Core C, the Large Animal Models Core at UNC-Chapel Hill, will provide access to hemophilic dogs and will provide expertise in coagulation testing and in vivo clotting models in these animals. This PPG presents three highly innovative projects to advance the care of patients with inherited bleeding disorders, including hemophilia A, hemophilia B, and patients with inhibitors to F.VIII or F.IX. The three projects investigate therapeutic strategies that utilize skeletal muscle or hematopoietic cells as targets for gene transfer, and thus are feasible for clinical translation even for those with liver disease due to viral hepatitis, which includes a large fraction of adults with severe hemophilia. The projects are highly interactive, and all three take full advantage of the proposed cores.

Public Health Relevance

Hemophilia A and B account for most of the inherited bleeding disorders in the United States of America, affecting 1 in every 5,000 males. Present treatments replacing the missing coagulation factors are effective, but with significant limitations. This Program Project will pursue animal studies of a number of complementary, innovative gene therapy approaches for the treatment of these bleeding disorders that may provide better care and that may also serve as new approaches for the care of other inherited disorders.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Philadelphia
United States
Zip Code
Arruda, V R; Samelson-Jones, B J (2016) Gene therapy for immune tolerance induction in hemophilia with inhibitors. J Thromb Haemost 14:1121-34
High, Katherine A; Anguela, Xavier M (2016) Adeno-associated viral vectors for the treatment of hemophilia. Hum Mol Genet 25:R36-41
Marcos-Contreras, Oscar A; Smith, Shannon M; Bellinger, Dwight A et al. (2016) Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII. Blood 127:565-71
Siner, Joshua I; Samelson-Jones, Benjamin J; Crudele, Julie M et al. (2016) Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models. JCI Insight 1:e89371
Geist, Rebecca E; DuBois, Chase H; Nichols, Timothy C et al. (2016) Experimental Validation of ARFI Surveillance of Subcutaneous Hemorrhage (ASSH) Using Calibrated Infusions in a Tissue-Mimicking Model and Dogs. Ultrason Imaging 38:346-58
Sharma, Rajiv; Anguela, Xavier M; Doyon, Yannick et al. (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126:1777-84
Nichols, Timothy C; Whitford, Margaret H; Arruda, Valder R et al. (2015) Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. Hum Gene Ther Clin Dev 26:5-14
Rozenova, Krasimira; Jiang, Jing; Donaghy, Ryan et al. (2015) MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 125:1730-8
Jain, Deepti; Mishra, Tejaswini; Giardine, Belinda M et al. (2015) Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system. Genom Data 4:1-7
Shaham, Lital; Vendramini, Elena; Ge, Yubin et al. (2015) MicroRNA-486-5p is an erythroid oncomiR of the myeloid leukemias of Down syndrome. Blood 125:1292-301

Showing the most recent 10 out of 84 publications