Endothelium lines blood vessels, and inter-connects all organ systems. There has been a growing appreciation that endothelial cells exhibit a rich diversity in structure and function. Such heterogeneity is apparent between endothelial cells in different organs, in endothelial cells along a single vascular segment within an organ and, indeed, between immediately adjacent cells. In the pulmonary circulation, endothelium in extra-alveolar blood vessels differs markedly from those in capillary segments. This program project grant is founded on the overall hypothesis that endothelium lining pulmonary arteries, capillaries, and veins is phenotypically distinct;each cell type is highly specialized to fulfill he unique demands of its vascular niche. We possess a limited understanding of how such heterogeneity is achieved to control site specific vascular demands, particularly in the lung's microvascular compartment. A principal goal in this amended renewal application is therefore to rigorously determine molecular mechanisms that allow lung microvascular endothelial cells to successfully control capillary function. Moreover, lung microvascular endothelial cell function is impaired by bacteria, such as Pseudomonas aeruginosa, during infection that culminates in acute lung injury. Hence, pulmonary microvascular endothelium represents a putative therapeutic target to combat vascular dysfunction in acute lung injury. The three projects in this amended renewal systematically study mechanisms regulating endothelial cell permeability and neutrophil transmigration;each project addresses three specific objectives, to: (1) identify and test novel molecular mechanisms (e.g. signatures) that control site-specific endothelial cell function, especially focusing on the microcirculation, (2) determine the importance of these mechanisms in preclinical models of disease, and (3) translate novel therapeutic approaches in preclinical models of disease. Projects are highly interactive both conceptually and pragmatically. This Program Project Grant draws on emerging developments in different fields of study, and applies these developments to generate new information about how microvascular endothelial cells, in particular, respond to inflammation and how they repair following injury. Defining the mechanisms that underlie lung microvascular endothelial cell function will provide insight into the site-specific nature of pulmonary vascular disease, and allow us to ultimately develop rational pharmacological therapies to discretely intervene in endothelial cell dysfunction that occurs in all known pulmonary vascular diseases.

Public Health Relevance

Endothelial cells line all blood vessels in the body, and coordinate the communication that occurs between the blood and tissues. Endothelial cell injury or dysfunction is a cardinal feature of vascular disease, making the endothelium an important therapeutic target. However, endothelial cells behave differently along blood vessels, and the molecules responsible for these distinct behaviors may represent key signatures of a vascular location, and novel targets for therapy, each principal goals of this program project grant.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Moore, Timothy M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of South Alabama
Schools of Medicine
United States
Zip Code
Sellak, Hassan; Zhou, Chun; Liu, Bainan et al. (2014) Transcriptional regulation of ?1H T-type calcium channel under hypoxia. Am J Physiol Cell Physiol 307:C648-56
Rich, Thomas C; Webb, Kristal J; Leavesley, Silas J (2014) Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 143:17-27
Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany et al. (2014) Excitation-scanning hyperspectral imaging microscope. J Biomed Opt 19:046010
Villalta, Patricia C; Rocic, Petra; Townsley, Mary I (2014) Role of MMP2 and MMP9 in TRPV4-induced lung injury. Am J Physiol Lung Cell Mol Physiol 307:L652-9
Stevens, Trevor C; Ochoa, Cristhiaan D; Morrow, K Adam et al. (2014) The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. Am J Physiol Lung Cell Mol Physiol 306:L915-24
Favreau, Peter; Hernandez, Clarissa; Lindsey, Ashley Stringfellow et al. (2014) Thin-film tunable filters for hyperspectral fluorescence microscopy. J Biomed Opt 19:011017
Xu, Ningyong; Francis, Michael; Cioffi, Donna L et al. (2014) Studies on the resolution of subcellular free calcium concentrations: a technological advance. Focus on "detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells". Am J Physiol Cell Physiol 306:C636-8
Hashizume, Masahiro; Mouner, Marc; Chouteau, Joshua M et al. (2013) Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 304:L287-97
Alexeyev, Mikhail; Shokolenko, Inna; Wilson, Glenn et al. (2013) The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641
Balczon, Ron; Prasain, Nutan; Ochoa, Cristhiaan et al. (2013) Pseudomonas aeruginosa exotoxin Y-mediated tau hyperphosphorylation impairs microtubule assembly in pulmonary microvascular endothelial cells. PLoS One 8:e74343

Showing the most recent 10 out of 73 publications