Heart failure remains a major public health problem and effective therapies are limited. Recent work by our group and others has suggested that caveolins, structured proteins involved in numerous cell functions including cell growth and hypertrophy may be novel targets for heart failure therapy. Work in our laboratory has shown that the muscle specific subtype of caveolin, Caveolin-3 (Cav-3) is a critical molecule in protecting the myocardium from myocardial stress. In addition, we have shown recently that cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) produces increased survival and enhanced cardiac function in the transverse aortic constriction (TAC) model of heart failure. The precise mechanisms involved in the attenuation of heart failure by Cav-3 remain to be elucidated and are the focus of the current unit. Caveolae are a specialized subset of lipid rafts enriched in cholesterol, sphingolipids and caveolins. Caveolae and caveolins are now known to produce critical interactions between the sarcolemmal membrane and cytoplasmic organelles including mitochondria in cardiac myocytes. Mitochondrial dysfunction is a critical element of heart failure progression. Caveolins have been found in mitochondrial membranes, however the role of caveolins and their effects on mitochondrial function have not been investigated. We have developed exciting novel preliminary data that show 1) an intimate relationship between caveolae and mitochondria that is increased by myocardial stress, 2) the presence of Cav-3 within the inner mitochondrial membrane of mitochondria, 3) the overexpression of Cav-3 in cardiac myocytes increases Cav-3 within mitochondria and improves mitochondrial function, and 4) targeting Cav-3 specifically to mitochondria produces improved mitochondrial function and reduced oxidative stress in cardiac myocj1:es. Based on these compelling preliminary data we will test the hypothesis that Cav-3 can alter the progression of heart failure via modulation of mitochondrial function. We will use state of the art molecular biology, imaging technology, electron paramagnetic resonance technology and physiological techniques in cardiac myocytes and clinically relevant models of heart failure to focus on mechanism and produce important preclinical data to support the potential use of caveolins as novel therapeutics for heart failure patients.

Public Health Relevance

Heart failure is a major cause of death and disability in the United States. This project is designed to test the hypothesis that caveolins can potentially alter the progression of heart failure via modulation of mitochondrial function. The work has potential to lead to novel therapies for heart failure patients.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Veterans Medical Research Fdn/San Diego
San Diego
United States
Zip Code
Pfeiffer, E R; Wright, A T; Edwards, A G et al. (2014) Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol 76:265-74
Wang, Jiawan; Schilling, Jan M; Niesman, Ingrid R et al. (2014) Cardioprotective trafficking of caveolin to mitochondria is Gi-protein dependent. Anesthesiology 121:538-48
Lee, Kristen L; Hoey, David A; Spasic, Milos et al. (2014) Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. FASEB J 28:1157-65
Tang, Tong; Lai, N Chin; Wright, Adam T et al. (2013) Adenylyl cyclase 6 deletion increases mortality during sustained *-adrenergic receptor stimulation. J Mol Cell Cardiol 60:60-7
Gao, Mei Hua; Lai, Ngai Chin; Tang, Tong et al. (2013) Preserved cardiac function despite marked impairment of cAMP generation. PLoS One 8:e72151
Tang, Tong; Hammond, H Kirk (2013) Gene transfer for congestive heart failure: update 2013. Transl Res 161:313-20
Rieg, Timo; Tang, Tong; Uchida, Shinichi et al. (2013) Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. Am J Pathol 182:96-106
Gao, Mei Hua; Lai, N Chin; Miyanohara, Atsushi et al. (2013) Intravenous adeno-associated virus serotype 8 encoding urocortin-2 provides sustained augmentation of left ventricular function in mice. Hum Gene Ther 24:777-85
Lai, N Chin; Tang, Tong; Gao, Mei Hua et al. (2012) Improved function of the failing rat heart by regulated expression of insulin-like growth factor I via intramuscular gene transfer. Hum Gene Ther 23:255-61
Tang, T; Gao, M H; Hammond, H Kirk (2012) Prospects for gene transfer for clinical heart failure. Gene Ther 19:606-12

Showing the most recent 10 out of 54 publications