The tone of the renal afferent arteriole (Aff) increases with perfusion pressure (PP) to protect the kidneys from damage (barotrauma). The normal myogenic response (MR) of the Aff was accompanied by generation of superoxide anion (02')- MRs and ROS signals were reduced by deletion of p47phox or addition of pegalated (PEG) superoxide dismutase (SOD) but were unaffected by PEG-catalase or knockout of nitric oxide synthase (NOS-3) relating normal Aff MRs to stretch-induced O2 from NADPH oxidase rather than to H2O2. However, incubation of Affs with H2O2 (from 1 to 30 IJM) caused dose-dependent blunting of MRs. Thus ROS in Affs can have opposite MR effects. Normotensive high salt (HS) mice with surgical reduction in renal mass (RRM, 5/6 nephrectomy) will model chronic kidney disease (CKD) and angiotensin II slow pressor infusion (Ang) will model hypertension. The MRs from these two were severely impaired, despite increased ROS in the kidneys and the Affs. However, the culprit ROS was apparently H2O2 since defective MRs were corrected by PEG-catalase but were unaffected by PEG-SOD, and were preserved in RRM mice drinking tempol for 3 months which normalized the increased excretion of H2O2 and Aff ROS.This proposal will investigate the hypothesis that ROS have opposite effects on MRs: short-term 02'enhances normal MRs by increasing VSMC Ca2+ entry mechanisms and Ca2+ sensitivity while prolonged H2O2 in models of oxidative stress impair MRs by downregulation of voltage operated calcium channels, PKC? and transient receptor potential canonical 6 channels, whose mRNAs were downregulated in a ROS-dependent manner in Affs from RPM mice. It will study short- vs. long- term effects of 02vs. H2O2 on normal MRs (Aim 1) and blunted MRs in mice with RRM or Ang infusion (Aim 2). Gene analysis of individual Affs by gene array, confirmed by RNAseq and RT-PCR will select ROS-dependent candidate pathways. MRs will be recorded directly from perfused Affs during step increases in PD. Fluorescence methods will quantitate ROS subtypes, intracellular Ca2+ and membrane potential. Use of knockout or VSMC transgenic models combined with transfection or silencing of candidate genes will test directly their roles in PP-induced MRs, ROS generation and Ca2+ entry and signaling. This project is focused on the roles of ROS in regulating the MR. Results should provide novel treatment targeted for patients with hypertension or CKD. It is integrated with the animal core where whole kidney MRs will be studied and the biomarkers core where genes and protein responses will be assessed.

Public Health Relevance

(See Instructions): An increase in the tone of the afferent arteriole of the kidney resets the blood pressure that the kidney regulates and thereby can lead to hypertension, whereas a breakdown in tone allows transmission of hypertensive pressure into the kidney and worsens chronic kidney disease. This project will study how oxidative stress regulates afferent arteriolar tone in animal models of hypertension or chronic kidney diseases which are major causes of cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL068686-15
Application #
9212834
Study Section
Special Emphasis Panel (ZHL1-PPG-S)
Program Officer
OH, Youngsuk
Project Start
Project End
2019-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
15
Fiscal Year
2017
Total Cost
$452,607
Indirect Cost
$161,542
Name
Georgetown University
Department
Type
Domestic Higher Education
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Li, Lingli; Lai, En Yin; Luo, Zaiming et al. (2018) High Salt Enhances Reactive Oxygen Species and Angiotensin II Contractions of Glomerular Afferent Arterioles From Mice With Reduced Renal Mass. Hypertension 72:1208-1216
Schmidt, Marcel Oliver; Garman, Khalid Ammar; Lee, Yong Gu et al. (2018) The Role of Fibroblast Growth Factor-Binding Protein 1 in Skin Carcinogenesis and Inflammation. J Invest Dermatol 138:179-188
Tassi, Elena; Lai, En Yin; Li, Lingli et al. (2018) Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-Binding Protein). Hypertension 71:160-167
Tassi, Elena; Garman, Khalid A; Schmidt, Marcel O et al. (2018) Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Sci Rep 8:15973
Wang, Xiaoyan; Villar, Van Anthony; Tiu, Andrew et al. (2018) Dopamine D2 receptor upregulates leptin and IL-6 in adipocytes. J Lipid Res 59:607-614
Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo et al. (2018) Nephron segment-specific gene expression using AAV vectors. Biochem Biophys Res Commun 497:19-24
Tiu, Andrew C; Bishop, Michael D; Asico, Laureano D et al. (2017) Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 19:70
Li, Lingli; Lai, En Yin; Luo, Zaiming et al. (2017) Superoxide and hydrogen peroxide counterregulate myogenic contractions in renal afferent arterioles from a mouse model of chronic kidney disease. Kidney Int 92:625-633
Diao, Zhenyu; Asico, Laureano D; Villar, Van Anthony M et al. (2017) Increased renal oxidative stress in salt-sensitive human GRK4?486V transgenic mice. Free Radic Biol Med 106:80-90
Yang, Jian; Jose, Pedro A; Zeng, Chunyu (2017) Gastrointestinal-Renal Axis: Role in the Regulation of Blood Pressure. J Am Heart Assoc 6:

Showing the most recent 10 out of 207 publications