Core A, The Administrative Core, will provide administrative support to the PI, as well as to the Project Leaders and other Core Directors. The Core serves and will continue to serve as a focal point for manuscript and figure preparation, organizing papenA/ork for abstracts that are submitted to national and international meetings as well as the numerous, local symposia, and scheduling of travel for all Program Project Grant personnel. It also organizes the educational and compliance seminars mandated both by the Federal government and by the Hospital and provides administrative support for satisfying all compliance requirements for both the Cores and Projects. The Core schedules the formalized weekly seminars and monthly meetings of the Group and distributes the agenda for those meetings. The Core schedules the meetings with the External and Internal Advisory Committees as well. Finally, the Core will continue to serve as the liaison point for interactions with the appropriate offices at the NHLBI. All records, academic, personnel, data and financial, needed by the Program's Director are kept in the central office so that timely Progress Reports can be prepared and the finances ofthe grant closely watched. The Core tracks finances in real time so that Program Project Grant participants can continuously monitor their spending. It also keeps a central datiabase of breeding for the various mouse colonies in order to ensure that an overall accurate census is maintained.

Public Health Relevance

This Core serves as'the administrative center for the Program Project Grant.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL069779-11
Application #
8460276
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-05-31
Support Year
11
Fiscal Year
2013
Total Cost
$284,482
Indirect Cost
$92,830
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Singh, Sonia R; Robbins, Jeffrey (2018) Desmin and Cardiac Disease: An Unfolding Story. Circ Res 122:1324-1326
Lowey, Susan; Bretton, Vera; Joel, Peteranne B et al. (2018) Hypertrophic cardiomyopathy R403Q mutation in rabbit ?-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 115:11238-11243
Valiente-Alandi, Iñigo; Potter, Sarah J; Salvador, Ane M et al. (2018) Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 138:1236-1252
Meng, Qinghang; Bhandary, Bidur; Bhuiyan, Md Shenuarin et al. (2018) Myofibroblast-Specific TGF? Receptor II Signaling in the Fibrotic Response to Cardiac Myosin Binding Protein C-Induced Cardiomyopathy. Circ Res 123:1285-1297
Robbins, Jeffrey (2017) Oliver Smithies, DPhil: 1925-2017. Circ Res 120:1535-1536
Tallquist, Michelle D; Molkentin, Jeffery D (2017) Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol 14:484-491
Travers, Joshua G; Kamal, Fadia A; Valiente-Alandi, Iñigo et al. (2017) Pharmacological and Activated Fibroblast Targeting of G??-GRK2 After Myocardial Ischemia Attenuates Heart Failure Progression. J Am Coll Cardiol 70:958-971
Schafer, Allison E; Blaxall, Burns C (2017) G Protein Coupled Receptor-mediated Transactivation of Extracellular Proteases. J Cardiovasc Pharmacol 70:10-15
Singh, Sonia R; Zech, Antonia T L; Geertz, Birgit et al. (2017) Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail 10:
Xiang, Fu-Li; Fang, Ming; Yutzey, Katherine E (2017) Loss of ?-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun 8:712

Showing the most recent 10 out of 131 publications