The primary purpose of the Biochemical and Molecular Biology Core (Core C) is to centralize support for techniques that are common to a majority of the individual projects with this Program Project Grant application. This core is thus an important resource for the investigators of this application, the individuals in their laboratories and is an essential part of this Program Project. This core will provide project investigators with technical support, teaching, upkeep of particular key pieces of equipment and centralize supply sources for commonly-used molecular and biochemical techniques. We have also developed a repository of methods/protocols kept electronically through the PPG website, protocols that are available to all participants in the program. We will continue to develop additional techniques for measurement of reactive oxygen species (ROS), use of HPLC, etc.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL070687-10
Application #
8452157
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2015-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
10
Fiscal Year
2013
Total Cost
$173,444
Indirect Cost
$59,314
Name
Michigan State University
Department
Type
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Restini, Carolina Baraldi A; Ismail, Alex; Kumar, Ramya K et al. (2018) Renal perivascular adipose tissue: Form and function. Vascul Pharmacol 106:37-45
Jackson, William F (2018) KV channels and the regulation of vascular smooth muscle tone. Microcirculation 25:
Fernandes, Roxanne; Garver, Hannah; Harkema, Jack R et al. (2018) Sex Differences in Renal Inflammation and Injury in High-Fat Diet-Fed Dahl Salt-Sensitive Rats. Hypertension 72:e43-e52
Diaz-Otero, Janice Marie; Yen, Ting-Chieh; Fisher, Courtney et al. (2018) Mineralocorticoid Receptor Antagonism Improves Parenchymal Arteriole Dilation Via a TRPV4-Dependent Mechanism and Prevents Cognitive Dysfunction in Hypertension. Am J Physiol Heart Circ Physiol :
Jackson, William F; Boerman, Erika M (2018) Voltage-gated Ca2+ channel activity modulates smooth muscle cell calcium waves in hamster cremaster arterioles. Am J Physiol Heart Circ Physiol 315:H871-H878
Ahmad, Maleeha F; Ferland, David; Ayala-Lopez, Nadia et al. (2018) Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arterioscler Thromb Vasc Biol :ATVBAHA118311720
Matin, Nusrat; Fisher, Courtney; Jackson, William F et al. (2018) Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am J Physiol Heart Circ Physiol 314:H122-H130
Kumar, Ramya K; Darios, Emma S; Burnett, Robert et al. (2018) Fenfluramine-induced PVAT-dependent contraction depends on norepinephrine and not serotonin. Pharmacol Res :
Thelen, Kyan; Watts, Stephanie W; Contreras, G Andres (2018) Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology 70:1435-1445
Jackson, W F (2017) Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Adv Pharmacol 78:89-144

Showing the most recent 10 out of 106 publications