In patients with lung injury and pulmonary edema, alveolar gas exchange is impaired which results in hypoxemia. We have previously reported that hypoxia impairs the lung's ability to clear edema by inhibiting the alveolar epithelial Na,K-ATPase. The focus of this application is to determine the mechanisms regulating the effects of severe hypoxia: 1.5%, 3% or 5% (pO2~10 to 40 mm Hg) on alveolar epithelial function focusing on the regulation of Na,K-ATPase endocytosis and degradation. In the previous cycle of the grant, we reported that in alveolar epithelial cells (AEC) exposed to hypoxia the plasma membrane Na,K-ATPase was rapidly degraded, while the degradation of the intracellular Na,K-ATPase molecules was kept at steady state. We now have preliminary data to suggest that this apparent discrepancy is related to the """"""""acute versus chronic"""""""" effects of hypoxia and cell adaptation via the hypoxia inducible factor a (HIF1a). Thus, we propose to dissect the mechanisms that regulate the effects of acute and prolonged hypoxia. We will determine whether a brief exposure of AEC to hypoxia results in mitochondrial reactive oxygen species mediated phosphorylation of the AMP Kinase leading to activation of protein kinase C zeta (PKCQ and Na,K-ATPase downregulation. We reason that prolonged exposure to hypoxia results in cell adaptation via a HIF1amediated mechanism in which the downregulation of the PKC? prevents further endocytosis/degradation of the Na,K-ATPase. We will study the effects of hypoxia on the alveolar epithelium via three interrelated aims:
in Specific Aim # 1 we propose to determine whether hypoxia activates AMPK and its role in the regulation of alveolar epithelial Na,K-ATPase and fluid reabsorption;
in Specific Aim # 2 we will study whether the HIF1a ubiquitin ligase, von Hippel Lindau protein (pVHL), regulates Na,K-ATPase endocytosis/degradation during hypoxia;and in Specific Aim # 3 we will determine whether HIF1a stabilization leads to PKC? ubiquitination and degradation as a mechanism of regulating total cell Na,K-ATPase levels and thus, alveolar epithelial function. Experiments have been conducted for each of the specific aims and the preliminary results support the feasibility and importance of this proposal.

Public Health Relevance

Completion of the proposed studies will provide novel information on the effects of hypoxia on the alveolar epithelium, specifically as it pertains to mechanisms of inhibition of the Na,K-ATPase, impairment of alveolar epithelial function and cell adaptation to hypoxia which may be of importance for the understanding and design of novel approaches to improve alveolar epithelial function in patients with pulmonary edema.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL071643-10
Application #
8446398
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
10
Fiscal Year
2013
Total Cost
$338,090
Indirect Cost
$115,581
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Brazee, Patricia L; Dada, Laura A (2018) Splice Wars: The Role of MLCK Isoforms in Ventilation-induced Lung Injury. Am J Respir Cell Mol Biol 58:549-550
Koch, Clarissa M; Chiu, Stephen F; Akbarpour, Mahzad et al. (2018) A Beginner's Guide to Analysis of RNA Sequencing Data. Am J Respir Cell Mol Biol 59:145-157
Dela Cruz, Charles S; Wunderink, Richard G; Christiani, David C et al. (2018) Future Research Directions in Pneumonia. NHLBI Working Group Report. Am J Respir Crit Care Med 198:256-263
Kong, Hyewon; Chandel, Navdeep S (2018) Regulation of redox balance in cancer and T cells. J Biol Chem 293:7499-7507
Hsiao, Hsi-Min; Fernandez, Ramiro; Tanaka, Satona et al. (2018) Spleen-derived classical monocytes mediate lung ischemia-reperfusion injury through IL-1?. J Clin Invest 128:2833-2847
Wang, Zheng; Divanyan, Alex; Jourd'heuil, Frances L et al. (2018) Vimentin expression is required for the development of EMT-related renal fibrosis following unilateral ureteral obstruction in mice. Am J Physiol Renal Physiol 315:F769-F780
Lu, Ziyan; Casalino-Matsuda, S Marina; Nair, Aisha et al. (2018) A role for heat shock factor 1 in hypercapnia-induced inhibition of inflammatory cytokine expression. FASEB J 32:3614-3622
Amarelle, Luciano; Lecuona, Emilia (2018) A Nonhospitable Host: Targeting Cellular Factors as an Antiviral Strategy for Respiratory Viruses. Am J Respir Cell Mol Biol 59:666-667
Radigan, Kathryn A; Nicholson, Trevor T; Welch, Lynn C et al. (2018) Influenza A Virus Infection Induces Muscle Wasting via IL-6 Regulation of the E3 Ubiquitin Ligase Atrogin-1. J Immunol :
Coates, Bria M; Staricha, Kelly L; Koch, Clarissa M et al. (2018) Inflammatory Monocytes Drive Influenza A Virus-Mediated Lung Injury in Juvenile Mice. J Immunol 200:2391-2404

Showing the most recent 10 out of 202 publications